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ABSTRACT 

All graphs considered are finite, undirected, with no loops, no multiple edges 
and no isolated vertices. For two graphs G, H, let N(G, H) denote the number 
of subgraphs of G isomorphic to H. Define also, for l >=0, N(I,H)= 
max N(G, H), where the maximum is taken over all graphs G with l edges. We 
determine N(l, H) precisely for all l -> 0 when H is a disjoint union of two stars, 
and also when H is a disjoint union of r > 3 stars, each of size s or s + 1, where 
s ->_ r. We also determine N(l, H) for sufficiently large l when H is a disjoint 
union of r stars, of sizes st -> s2 ----" ' • ~ s, > r, provided ( S  1 - -  S,) 2 < S 1 31- S r --2r. 
We further show that if H is a graph with k edges, then the ratio N(l, H)/l k 
tends to a finite limit as l ~ c,. This limit is non-zero iff H is a disjoint union of 
stars. 

1. Introduction 

A l l  g r a p h s  c o n s i d e r e d  a re  f ini te ,  u n d i r e c t e d ,  w i th  no  l o o p s ,  no  m u l t i p l e  e d g e s  

a n d  no  i s o l a t e d  ve r t i ces .  F o r  t w o  g r a p h s  G,  H ,  le t  N(G, H) d e n o t e  t he  n u m b e r  of 

s u b g r a p h s  of  G i s o m o r p h i c  to  H.  D e f i n e  a lso ,  fo r  l >= O, N(l, H )  = m a x  N(G, H), 
w h e r e  the  m a x i m u m  is t a k e n  o v e r  al l  g r a p h s  G wi th  l edges .  

E r d 6 s  a n d  H a n a n i  [2] d e t e r m i n e d  N(l, H) exp l i c i t l y  w h e n  H is a c o m p l e t e  

g r a p h .  W e  i n v e s t i g a t e d  in [1] t he  a s y m p t o t i c  b e h a v i o u r  of  N(l, H) fo r  f ixed  H as 

l t e n d s  to  inf ini ty .  H e r e  we  d e t e r m i n e  N(l, H) p r e c i s e l y  fo r  al l  l _--- 0 w h e n  H is a 

d i s j o i n t  u n i o n  of t w o  s ta r s  ( T h e o r e m  5) a n d  a l so  w h e n  H is a d i s j o i n t  u n i o n  of  

r => 3 s ta rs ,  e a c h  of  s ize s o r  s + 1, w h e r e  s => r ( T h e o r e m  3). W e  a l so  d e t e r m i n e  

N(l, H) fo r  suf f ic ien t ly  l a rge  l w h e n  H is a d i s j o i n t  u n i o n  of  r s ta r s  of  s izes  

st -> sz -->'" • > s, > r, p r o v i d e d  ( S l  - -  S t )  2 < $1 ~- S, --  2r ( T h e o r e m  4). W e  f u r t h e r  
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show that if H is a graph with k edges, then the ratio N(l, H)/l k tends to a finite 

limit as l ~ oo. This limit is non-zero iff H is a disjoint union of stars (Theorems 

1, 2). 

2. Notation and definitions 

For every set A, I A[  is the cardinality of A. G~ is a graph with 1 edges. For 

every graph G, V(G) is the set of vertices of G and E(G)  is its set of edges. If 

e E E(G),  the set N(e) of neighbours of e is the set of all edges f E E(G)\{e} 
that are adjacent to e, and the degree of e is d ( e ) =  IN(e)l. 

For S C V ( G ) ,  define N ( S ) = { x ~ V ( G ) : x y E E ( G )  for some y ~ S } .  

Define also 3 (G)  = max{[ S I - [ N ( S ) I  : S c v ( a ) } ,  ~,(a)  = ½(1 v ( a ) [  + 3 (6 ) ) .  If 

x E V(G), G - x is the subgraph of G consisting of the edges of G not incident 

with x and their vertices. 

If G, H, T are graphs and H is a subgraph of T, let x(G; T,H) denote the 

maximal number r, such that there exist r subgraphs of G isomorphic to T 

whose intersection includes a subgraph isomorphic to H. (x (G;  T, H ) =  0 if G 

contains no copy of H.) The operational meaning of this definition is: If H '  is a 

copy of H in G, then H '  can be extended to a copy of T in G in at most 

x(G; T,H) ways. 

I(k)  is the graph consisting of k independent edges and K(1, k) is the star 

consisting of k edges incident with one common vertex. Since we do not allow 

isolated vertices, we agree that K(1,0)  is the empty graph. 

For nonnegative numbers ]1, s~,j2, s2 . . . . .  j~, sk, H(j l  * s,,j2 * s2 . . . .  ,h  * s~) is 

the disjoint union of j ~ + . . . + j k  stars: jl of type K(1,&), j2 of type 
K(1, s : ) , . . .  ,jk of type K(1, &). If the multiplicity ji is 1, we write s, instead of 
1 * s~. We also let HE(r, l) denote the graph with l edges which is the disjoint 

union of r stars, each having [l/r] or [l/r] edges. Note that 

and 

H ( j  * (s + 1),(r - j ) *  s) = HE(r, rs +j) 

HE(r, l) = H([I/r], [(l + 1) / r ] , . . . ,  [(l + r - 1)/r]). 

If H is any disjoint union of r stars and l _-> 0, define 

(1) g(l, H) = N(HE(r, l), H).  

In particular, define for r _- j _-> 1 and s > 0 

(2) g(l, r, j, s) = g(l, H(j  * (s + 1), (r - j )  * s)). 
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3. An extremal property of unions of stars 

One of the main results obtained in [1] is the following: 

THEOREM A (Theorem 5 in [1]). For every graph H there are positive constants 
cj, c2 such that c~l~(m<= N(l, H) < c21 ~") for all l >-_ [E(H)[.  

By the definition of 7(H), for every graph H 

(3) ~(H)_-__ }l V(H) I- 

The extremal graphs H for which equality holds in (3) were called a.e.c, graphs 
in [1]. The asymptotic behaviour of N(I ,H) for such graphs was determined 
quite precisely as follows: 

THEOREM B (Theorem 4 in [1]). If H is a.e.c., then 
l 

N(l, H) = (1 + 0(1-'/2)) . [Aut HI"  (2l)tV'mJ/2' 

where [Aut HI is the number of automorphisms of H. 

The following simple theorem characterizes the extremal graphs for the 
opposite inequality for y(H). 

THEOREM 1. For every graph H 

(4) 7(H) =< [E(H)[,  

and equality holds if and only if H is a disjoint union of stars. 

PROOF. The theorem can be proved quite easily directly from the definition 
of 7(H). However, we prefer to derive it from Theorem A. 

Obviously, for every graph H: 

N ( I , H ) < (  [ l ) l ) <  1 l,E(ml. 
= E ( H  = [E(H)[! 

This, together with Theorem A, implies the validity of (4). 
Suppose H is a disjoint union of r stars. For every l, put Ot = HE(r, I). One 

can easily verify that there is a positive constant c such that 

N(l, H) >= N(G~, H) >= c . 11~tml 

for all sufficiently large I. Combining this with Theorem A, we get 

IF(H)[ _-< y(H) 

and therefore y(H) = [E(H)].  
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Now suppose, conversely, that H is not a disjoint union of stars. Then there is 

an edge e E E(H) incident with two vertices of degrees > 2. Put H'  = H -  e. 

Obviously I v (n ' ) l  = I v ( n ) l ,  6 (H') => /5 (H) and thus y(H')->_ y(H). 
Therefore, using inequality (4) for H', we conclude that 

y ( H ) =  < y ( H ' ) =  < IE(H')I < IE(H)I,  

i.e., inequality (4) is strict for H. [] 

In view of Theorems A and B, the following conjecture seems quite natural. 

CONJECTURE 1. For every graph H there is a positive constant b (H) such that 

lim N(I, H)/l r~H~= b(H). 

By Theorem B, Conjecture 1 holds if H is a.e.c. The next theorem shows that 

it holds also if H is a disjoint union of stars. 

THEOREM 2. (i) Let H be a graph with k edges. For l >= k define 

Then h(1) is a monotone non-increasing function of I for l >= k. 
(ii) If H is a disjoint union of stars, then the limit 

lira N(l, H)ll "(m 

exists and is a positive finite number. 

PROOF. (i) Suppose ! > m _-> k, and let Gt be a graph such that N(l, H) = 
N(Gt, H). Let S be the set of all ordered pairs (K, M), where M is a subgraph of 

G~ with m edges and K is a subgraph of M isomorphic to H. Clearly 

I S l = N ( l ' n ) "  m - k  ' 

and 

Therefore, 

l - k  
N(m,H) >- N(I,H)" ( m - k ) / ( 1  ) =  N(I ,H, .  (~ )  / (~ ) , 

and h(m)>= h(l), as needed. 
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(ii) By part (i) of the theorem, the limit 

lim N(l, H)/ l  jE~ml 

exists for every graph H. By Theorem A and Theorem 1, this limit is positive iff 

H is a disjoint union of stars (and in this case ~ ( H ) =  {E(H)I) ,  and is zero 

otherwise. [] 

By Theorem 1 the disjoint unions of stars form, in a sense, a class dual to the 

class of a.e.c, graphs. In the next sections we compute N ( I , H )  precisely for 

various graphs H in this class. 

4. Disjoint unions of stars of nearly equal sizes 

In this section we prove the following two theorems: 

THEOREM 3. If  r >--_ l and k >= r 2 or k = r : -  r + l, then 

(5) N(l, HE(r, k )) = N(HE(r ,  /), HE(r, k )) 

( =  g(l, HE(r, k ) ) - -  see (1)) foral l l  >=0. 

(Recall that if k = r .  s +• 1 _-<j _-< r, then g(l, HE(r, k)) is denoted by g(/, r, L s) 

- -  see (2).) 

THEOREM 4. If  s, >-_ s2 >='" • >= s, > r >= 2 and (s~ - s,) 2 < s~ + sr - 2r, then 

there exists an lo such that for all l > lo, 

(6) N(l, H(Sl, s2 . . . . .  st)) = N(HE(r , / ) ,  H(s, ,  sz , . . . ,  s,)) 

( = g(l, U(s, ,  s2, . . . ,  s , ) ) - -  see (1)). 

If k < r log r and H = HE(r, k), then N(I ,H)  ~ N(HE(r ,  l ) ,H),  REMARK 1. 

since in this case N ( H E ( r  + 1, l), H ) >  N(HE(r ,  l), H)  for sufficiently large I. 

(This can be proved by computations similar to those appearing in the next 

remark.) Thus the condition k >= r 2 in Theorem 3 is not entirely superfluous 

(although it is probably not best possible). 

REMARK 2. (i) One can easily check that if H = H(sl,  s2,. . . ,sr),  (r >-1, 

s,>=s2>=...>=s,>-2) and k = I E ( H ) [  ( = s , + ' " + s r ) , t h e n  

r, N(HE(r,O,H)-IAutHI .(1 + O(Z-')). 

(Note that I A u t H I . N ( H E ( r , I ) , H )  is the number of embeddings of H into 

HE(r, l).) 
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Therefore, if H falls within the scope of Theorem 4, then the value of the limit 

lim N(l, H)/l k, 

whose existence was proved in Theorem 2, is r!/(r k [Au tH[ ) .  

(ii) Theorem 5 in Section 5 and Lemma 7 of this section show that for r = 2 

the assertion of Theorem 4 holds iff Sl _-> s2 _-> 1 and (sl - s2) 2 < Sl + s2, except for 

S l  = S2 = 1. 
We begin with some lemmas. After Lemma 2 we shall briefly outline the 

strategy of the proof of Theorems 3 and 4. 

LEMMA 1. If G, T, H are graphs and H is a subgraph of T, then 

N(G, T) < N(G,H) . x(G; T,H) 
= N(T,H)  

PROOF. 

G isomorphic to T, and A is a subgraph of B isomorphic to H. Obviously 

I SI = N(G, T). N(T, n ) ,  

and 

Let S be the set of all ordered pairs (A, B), where B is a subgraph of 

ISI<=N(G,H).x(G;T,H).  

This clearly implies the desired result. 

LEMMA 2. If H is any disjoint union of stars, then 

for all 1 >= O. 

N(l, H) >-_ g(l, H) 

[] 

We shall prove Theorem 3 according to the following scheme: First we prove 

(Lemma 5) that for H = H(r * s) and all Gj, N(G,, H)<= N(HE(r, l), H). This 

proves Theorem 3 for disjoint unions of equal stars. (In order to perform the 

induction, we are forced to consider at the same time also the graphs 

H(s + 1 , ( r -  1)* s).) 

In order to prove Theorem 3 for T = H ( j  * (s + 1), ( r -  j )*  s), we show that 

for all G~, x(Gt, T,H)<= x(HE(r, l); T,H), and use Lemma 1. Lemma 1 holds as 
equality for G~ = HE(r, l). 

The structure of the proof of Theorem 4 is similar. 

PROOF. Obvious. [] 
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LEMMA 3. Let H be a graph. For every e E E (H), let S (e ) denote the subgraph 

of H spanned by N(e)  and let T(e) denote the subgraph of H spanned by 
E (H) \ {N(e )U{e}} .  Define an equivalence relation ~ on E ( H )  as follows: 

e ~ e' iff S(e)  and T(e) are isomorphic to S(e') and T(e'), respectively. Let 

el, e2 . . . .  , eq be a system of representatives of the equivalence classes of E(H) .  

Define 

L ( H )  = {(S,, T,), (S2, T2) . . . . .  (Sq, Tq)} 

where S~ = S(e~), T~ = T(e,) for 1 <= i <-- q. Denote by Ti the number of edges of H 
equivalent to ei. Let cl, c2, . . . ,  cq be non-negative real numbers whose sum is 1. 

(i) I f  G = Gt is a graph with I edges f l . . . .  , fi and dj = d (fi ) for 1 < j <= l, then 

I q 

N(G,,  H)  <= ~ ~ c~ N(di, S,). N(I - 1 - d i ,  T~). 
j= l  i=1 'Yi 

(7) 

(ii) 

N ( l , H ) N l . m a x  N ( k , S , ) . N ( l - l - k , T ~ ) : O N k 5 1 - 1  . 

PROOF. Part (ii) follows immediately from part (i). To prove (i) fix i, 1 _-< i < q 

and denote by F the set of all ordered pairs (f, A),  where A is a subgraph of G, 

f E E ( A ) ,  and A is isomorphic to H by an isomorphism that carries f to one of 

the 7i edges of H equivalent to ei. Clearly 

(8) IFI = N(G,  H) .  T,. 

Let ~ be a fixed edge of G. If ~ , A ) E  F, then clearly E ( A ) A  N ~ )  is a copy 

of & and E ( A ) f q  ( E ( G ) \ ( N ( f i ) U  {fi})) is a copy of T~. (Here N(f/) denotes, of 
course, the set of edges of G adjacent to f/.) Thus, the number of pairs 
(f/, A )  ~ F does not exceed 

This shows that 

N(dj, S,). N( l  - 1 - dj, T,). 

I 

IFI ~ ~ N(dj, S,). N(I - 1 - dj, T~). 
j= l  

From this and (8) we obtain 

1 
N(G,,H)<= ,~, N(dj, S,)N(I - 1 - dj, T~). 

j= l  7 '  

Since the last inequality holds for each i, 1 _-< i _-< q, it implies (7). [] 
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The following technical lemma is used in the proof of Theorem 3. We omit its 
(easy) proof. 

Let l, r, s, x be integers, r > 0 ,  s > 0 ,  l >=(r + l)s, 0 < x < l - 1 .  LEMMA 4. 

(i) Define ([1 
x r 

s -  1 ,=o s " 

I f  x >= l/(r + 1 ) -  1, then h(x + 1) < h(x). 

(ii) Put x = [l/(r + 1)] - 1; then 

g ( l , r + l , r + l , s - 1 ) = (  x ) s - 1  g ( l - l - x , r , r , s - 1 )  

(See (2).) 
(iii) 

+ g ( l - l , r  + l , r +  l , r  + l , s - 1 ) .  

g ( l , r + l , r + l , s - 1 ) > = g ( l , r + l , l , s - 1 ) .  ( [ I / ( r + l ) ] - ( s - 1 ) ) "  
(r + 1). s '  

The next lemma proves Theorem 3 if k = 0 or 1 (mod r). 

LEMMA 5. (i) I f  S >= r >= O, then 

( ( [ l + r - ~ ] ) ) l  - ( r  + 1). 1~i 
N(I ,H(s  + l , r * s ) ) =  g(l,r  + 1,1, s) = s 

s + l  i=o 

for all I > O. 
(ii) I f  s > r + 1 > 1, then 

( g(l ,  g ( ( r  + 1)* s)) = g(l, r + 1, r + 1, s - 1) = ~ 
i = 0  

for all l >= O. 

(Note that the graphs in Lemma 5 are unions of r + 1 stars, not r.) 

PROOF. 

and 

By Lemma 2 

N( l ,H( s  + l , r *  s))>->_ g(l,r + l , l , s ) ,  

N(l, H((r + 1) * s)) _--- g(l, r + 1, r + 1, s - 1) 

for a l l s=>r  > 0 a n d  1=>0. 
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(9) 

and 

(lO) 

To complete the proof we show, by induction on r, that 

N(l ,  H ( s  + 1, r * s)) N g(l, r + 1, 1, s)  = l - (r + 1)s. 
s + l  i=O 

N ( l , H ( ( r  + l ) ,  s))<__g(l,r + l , r  + l , s - 1 )  = 
i=O 

For r = 0, (9) and (10) are trivial. Assuming they hold for r - 1, we shall prove 
them for r (r > 1) according to the following scheme: 

(i) (9)r-, ~ (10),_1 ~ (9),. 
(ii) (10),_1 & (9), ::) (10),. 
(i) Suppose s _-> r. If l =  < (r + 1).s, (9) is trivial. Thus we may assume that 

l > (r + 1). s. Put H = H ( s  + 1, r * s). Using the notation of Lemma 3 

L ( H )  = {(KI.s, H ( r  * s)), (K1,=-1, H ( s  + 1, (r - 1)* s))} 

a n d  ~//1 : s 31- 1, ')/2 ~ r.  s. Applying part (ii) of Lemma 3 with c~ = (l - r .  s)/l, 

c: = r .  s/l, we obtain 

{ c~ N(k ,K~ . , ) .  N ( l  k , n ( r  s)) N(l ,  H )  < I max 1 1 

+ c2 N ( k ,  K~.=-I)" N ( l  - 1 - k, n ( s  + 1, (r - 1) * s)) : 
r s  

O=< k _-< / - 1 }  . 

Put y = l - 1 - k. By the induction hypothesis, the last inequality implies 

N(l ,  H )  < I max -;-~--y • " ,=o 

r . s  s - 1  s + l  i=o 

---- m a x  l - ( r + t ) . s  (k  s+ 1) .  h ( [~ - r+ / ] )  
s + l  " i=0 s 

: 0 = < k = < l - 1 }  

: 0 < k < l - 1 }  

[ 1 + i ] )  
l - ( r + l ) s  " [r lJ  

= / + 1  s + " 
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(The last equality holds since the maximum of II~=o(}), where x0 . . . .  ,xr are 

nonnegative integers whose sum is preassigned, is attained when the difference 

between any two x ~ - s  does not exceed 1.) The last inequality is just (9). 

(ii) Suppose s _-> r + 1. We prove (10) by induction on I. If 1 < (r + 1). s, (10) is 

trivial. Assume (10) holds for l - 1 ,  and let Gt be a graph (l => (r + 1). s). To 

complete the proof we must show that 

(11) N(G,H)<=g(l,r + l,r + l , s -1 ) ,  

where 
H = H ( ( r +  1)* s). 

Let e be an edge of maximal degree in Gt and put d = d(e). We consider two 

possible cases. 

Case I. d >-_ [l/(r + 1)] - 1 
In this case the number Nl of copies of H in G~ that contain e does not exceed 

(s -dl )"  N ( l - l - d ' H ( r *  s)). 

By the induction hypothesis 

r 

S - -  i=o S ' 

and by part (i) of Lemma 4 

; 
where 

x = [l](r + 1)] - 1. 

Let N2 be the number of copies of H that do not contain e. By the induction 

hypothesis 
N2<-_ g ( l -  l,r + l,r + l , s -1 ) .  

Combining the last three formulas with part (ii) of Lemma 4, we obtain 

N ( G ' , H ) = N ' + N 2 < (  x ) = s - 1  g ( l - l - x , r , r , s - 1 ) + g ( l - l , r + l , r + l , s - 1 )  

=g(l,r+ l ,r+ l , s -1 ) ,  

which is the required inequality (11). 
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Case II. d <= [l /(r  + 1)] - 2 =< [l/(r + 1)] - 1 

In this case the degree of every edge of Gt does not exceed [l /(r  + 1)] - 1. It 

follows that 

x ( G ,  ;K(1 ,  s), K(1, s - 1))_-< [I/(r + 1)] - 1 - (s - 2) = [l /(r  + 1)] - (s - 1) 

(see Section 2 for the definition of x ( G ;  T,H)) ,  and thus 

x ( a t  ;H,  H(s ,  r * (s - 1)))_ -< ([l l(r  + 1)1- (s - 1))'. 

This, together with L e m m a  1, relation (9) (with s replaced by s - 1), and part (iii) 

of Lemma 4, implies 

N ( G , ,  H )  <-_ N ( G j ,  H( s ,  r * (s - 1))). ([l /(r  + 1)1 - (s - 1))r/(r + 1)" s '  

< g(l,  r + 1, 1, s - 1). ([l /(r  + 1)] - (s - 1))r/(r + 1)" s r 

<-g( l , r  + l , r  + l , s - 1 ) ,  

as needed.  

This settles Case II and thus completes part (ii) of the induction on r. [] 

LEMMA 6. For s >= r >-_ j >= l and  l >= r . s, let 

x (1, r, j, s)  = x (HE(r ,  l); H ( j  * (s + 1), (r - j )  * s), H ( r  * s)). 

(i) I f  Gz is a graph, then 

x (G~ ; H ( j  * (s + 1), (r - j )  * s),  H ( r  * s))  <-_ x (I, r, j, s). 

(ii) g(l,  r,j, s)  = g(l ,  r, r, s - 1). x(l ,  r,j, s)~(s + I~. 

PROOF. Put H = H ( r  * s)  and T = H ( j  * (s + 1), (r - j )*  s). 

(i) L e t / ~  be a copy of H in Gt. Let  el . . . . .  er be r independent  edges in/~.  For  

every 1 <= i <= r, let y, be the number  of edges in E ( G ~ ) \ E ( f l )  that  are adjacent  

to ei and are not adjacent  to any ej ( j ~  i). Clearly 

r 

(12) ~ y , < l - r . s .  

It is easily checked that  the number  of copies of T in Gt that  c o n t a i n / ~  does not 

exceed 

{y, ,y~. . .  y~ : 1=<i1< i 2 < ' " <  ij = r}. 

An  easy computa t ion  shows that the last sum, in which the y~ - s are nonnega- 

tive integers that  satisfy (12), attains its maximum when the difference between 
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any two yi - s does not exceed 1, and their sum is l - rs. Since this maximum is 

precisely x(l, r,j, s), we conclude that 

x(G, ; T, H)  <- x(l, r,j, s), 
as needed. 

(ii) Put G = HE(r, l). By definition 

N(G, H)  = g(l, r, r, s - 1), 

and 

Clearly 

N(G, T) = g(l, r,j, s). 

N(T, H)  = (s + 1) j, 

and every copy of H in G is included in precisely x(l, r,], s) copies of T in G. 

Thus 
N(G, H) .  x(l, r,j, s) = N(G, T).  N(T, H),  

which, together with the previous three equalities, implies the validity of (ii). [] 

PROOF OF THEOREM 3. Suppose s _-__ r > j_-> 1. Put H = H(r*  s) and T = 

H( j  * (s + 1),(r - j ) *  s). By Lemma 2 

N(I, T )>  g(l,r,j,s). 

Let G~ be a graph. In order to complete the proof, we must show that 

N(G,, T) < g(l, r,j, s). 

If I < r • s, this is trivial. Thus we may assume that l => r • s. By part (ii) of Lemma 

5 
N(G,, H)  <= g(l, r, r, s - 1). 

By part (i) of Lemma 6 

Clearly 

x(G~ ; T ,H)  < x(l,r,j ,s).  

N(T, H)  = (s + 1) j. 

Combining the last three formulas with Lemma 1 and part (ii) of Lemma 6, we 

obtain 

T) < N(Gt, H) .  x(G, ; N(G,,  = N(T,V-I) T , H ) < g ( l , r , r , s - 1 ) . x ( l , r , j , s )  = (s + 1)J =g(l ' r 'g ' s ) ' c]  
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In order to prove Theorem 4, we need another definition and three lemmas. If 
H is a graph, r >0  and l > 0 ,  define NSr(I,H)= max N(G,H),  where the 
maximum is taken over all graphs G with I edges that are disjoint unions of r 
stars. 

LEMMA 7. Suppose s > t > 1. 
(i) If 

(13) (s - 02 < s + t, 

then for l > to(s, t), 

(14) NSffl, n(s, t)) = g(l, n(s, t)). 

(ii) If (s - 02 > s + t, then for all 1 >= s + t, 

NSffl, n(s, t)) > g(l, H(s, t)). 

PROOF. (i) An easy computation shows that if s = t, then (14) holds for all 
l > 0. Thus we assume that s > t. Clearly, if l > s + t, then 

NSz(I,H(s, t))= max { (//2s--e)(1/2+ e)+ (1/2 t e ) (1 /2;  e) . 

0<= e <= l / 2 - t , 2 ] l - 2 e } .  

However, 

(//2 s- e) (112;  e) + (112 t e ) ( / / 2 ;  e ) =  1 h(e ) 

where 

h(e) = ~ ( (~_  i)2_ e2) " (~__l ( / - e - k ) +  ~__l ( / + e - k ) )  

=, /=~((~_)2_i  e 2) 2(so+s2e2+.-.  +s2,eZr), 

r = [(s - t)/2], and 

t ~ j l < J 2 < ' " < j 2 i < s  t k < s  
k ~ jl , . . . , j2 i 

= s -  (1 + 0(l-1)) (O<=i<=r). 
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We prove part (i) by showing that if (s - 02 < s + t and l is sufficiently large, 

then h is a decreasing function of s for 0 _  -< E _-< 1 / 2 -  t. Define q ( z )  = h(X/-z).  

Clearly 

q ' ( z )  = q ( z ) "  ( -  A ( z ) +  B ( z ) )  

where 
'- '  1 

A ( z ) = , : o  ~ ( ( / / 2 ) -  0 2 -  z ' 
r - - I  

$2 ÷ 2S4Z + " " . +  r • S2r " Z 
B ( z  ) = so+ S 2 Z  ÷ ' "  " ÷ $2r-2 Z r - I  ÷ S2r Z r  " 

By the definitions of h ( e )  and the coefficients s2i, q ( z ) > 0  for 0 < z =  < 

(1/2 - 02, if I _-> 2s. Clearly A ( z )  >= 4t/12 for 0 < z < (I /2 - 02. We claim that  if 

( s -  0 2 <  s + t and l is sufficiently large, then 

• i 1 tsz~z 4t  
1< f o r a l l i ,  l < i < r ,  

S2i 2Z " ~  ~ 

and thus B ( z ) <  4 t / l  2. Indeed 

is2i i (s  - t -  2i + Z)(s  - t - 2i + l )  . ( l  + O ( l  ,)) 
s2i 2 = 2i(2i - 1). (1/2) 2 

< 2(s - t ) ( s  - t - 1).  
(1 + O ( I - 1 ) )  < 4t/ l  2. 

We conclude that if (s - t )2< s + t and 1 is sufficiently large, then q ' ( z ) <  0 for 

0 <-_ z <-_ (1/2 - t )  2, and thus h (e) is a decreasing function for 0 =< e =< I/2 - t and 

(14) follows. 

(ii) Suppose (s - t)2 ~ S + t and I _-> s + t. Clearly s _-> 3, s - t _-> 2. We consider 

two possible cases. 

Case  1. l = 2 m  is even  

If m < s ,  then 
NS2(I, H ( s ,  t ))  >->_ 1 > 0 = g(l ,  H ( s ,  t)). 

If m _-> s one can easily check that 

NS2(I, H ( s ,  t))  - g( l ,  H ( s ,  t))  

(7)(7) 
= m I ( m - 1 ) !  ( ( ( s _ t ) ~ _ ( s + t ) ) m + s ( s _ l ) + t ( t _ l ) )  

s ! t ! ( m - s  + 1 ) ! ( m - t + 1 ) !  

> 0 .  
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Case 2. l = 2 m  + l is odd  

If m + l < s ,  then 

NS2(I, H ( s ,  t))  > 1 > 0 = g( l ,  H(s ,  t)). 

If m + 1 > s, one can easily check that 

where 

and 

NS2(I, H ( s ,  t))  - g(l ,  H ( s ,  t))  

=> ( m s + 2 ) ( m  t 1 ) +  (m  s 1 ) ( m  t 2 ) _ ( m s  + 1 ) ( 7 ) _ ( s m ) ( m  t + l )  

(m + 1)! (m - 1)! • ( a m  2 -  bm  - c) ,  
s! t ! ( m  - s  + 2)! (m - t + 2)! 

a = 2((s - 0 2 - (s + t)), 

b = (s - t)2(s + t - 3) - 4s 2 - 4t 2 + 6s + 6t, 

c = 2 t ( t -  1 ) ( t - 2 ) + 2 s ( s -  1 ) ( s - 2 ) .  

Thus a _-> 0, and by substituting (s + t ) +  a / 2  for ( s -  0 2 in b, we obtain 

a 
a m  2 - bm - c = -~ m (2 m - s - t + 4) + 2s (s - 1) (m - s + 2) 

+ 2 t ( t  - 1)(m - t + 2) 

> = 2 s ( s -  1)(m - s  + 2 ) > 0 .  

This completes the proof of part (ii). (It is worth noting that  if (s - t) 2 = s + t, 

then NSf f l ,  H ( s ,  t ) )]g(l ,  H ( s ,  t))---~ 1 as l ~ o% whereas if (s - 0 2 > s + t, this limit 

is larger; this will be a consequence of Lemmas  12 and 13.) [] 

LEMMA 8. I f  Sl >---- S2 >=''" >= Sr >---- 1 a n d  (sl - s,) 2 < sl + s,, then for all suffi-  

ciently large l, 

NS ,  (l, H(s1 . . . .  , s,)) = g(l ,  H ( s ,  . . . .  , s,)). 

PROOF. One can easily check that  (s~-  s i)2< s~ +si  for all 1 < i < j  <= r. By 

Lemma 7 there exists an lo such that 

N S d l ,  n ( s , ,  s,)) = g(l ,  n ( s , ,  si)) 

holds for a l l l  < i < j = < r  and l > l o .  



112 N. ALON Isr. J. Math. 

Assume  that l > r .  lo and suppose  that 

NS~ (1, n ( s l , . . . ,  s , ) )  = N ( H ( I ,  . . . .  , l,), H ( S l  . . . .  , Sr)) 

where  
I~>=...>=L, 1 ~ + . . . + 1 , = 1 .  

If l~ -  l, < 1, we have nothing to prove.  Otherwise  It + L > lo. Define II = 

[(l~ + l,)/2], l~ = [(It + L)/2] and l; = li for 3 =< i < r - 1. By L e m m a  7 one can 

easily show that 

N ( H ( I [ , . . . ,  I;), H ( S l , . . . ,  S,)) > N ( H ( I ,  . . . .  , l,), H ( s l , . . . ,  s,)). 

Therefore  

NS~(I, H ( s ,  . . . . .  s~)) = N ( H ( t l  . . . .  , l',), H ( s ,  . . . . .  s,)). 

By repeatedly  applying this argument  to pairs of l','s that differ by more  than 

one, we finally obtain that 

NS,  (l, H(s~ . . . .  , s,)) = N ( H E ( r ,  l), n ( s ,  . . . .  , s,)) = g(l ,  H ( & , . . . ,  s,)). [] 

Suppose Sl>=S2>-_ '">=sr>r > 2 ,  ( s ~ - s , )  z < s ~ + s r - 2 r  and  LEMMA 9. 

define 

Clearly 

x( l ,  r, s b . . . ,  st) = x ( H E ( r ,  l); H ( s l  . . . .  , sr), H ( r  * r)). 

x(l$ r,  S l  . . . . .  St) = g ( l  -- r 2, H ( s ,  - r , . . . ,  sr - r)) 

provided 1 > r 2. 

(i) For all  sufficiently large I 

x( l ,  r, S l , . . . ,  Sr) = NSr ( l  - r 2, H(s~ - r , . . . ,  s, - r)). 

(ii) For all  sufficiently large l and  for every graph G~ with l edges, 

x ( G i  ; n ( s ~ , . . . ,  st), n ( r  * r)) <:_ x( l ,  r, s l , . . . ,  sr). 

Off) 

x ( l , r , s , , . . . , S r )  
g(l, H ( S l , .  . . ,  s , ) )  = g(l ,  H ( r  * r)) . N ( H ( s l , . . . ,  s , ) ,  H ( r  * r)) " 

PROOF. Part  (i) is just a res ta tement  of L e m m a  8, and the proof  of part  (iii) is 

the same as that of part  (ii) of L e m m a  6. To prove part  (ii) put H -- H ( r  * r), 

T = H ( s l  . . . . .  s,). L e t / 4  be a copy of H in Gt. Let  Vl , . . . ,  v, be the centers of the 
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stars of/4.  For every 1 =< i < r, let y, be the number of edges in E(G~)\E(f-I)  that 

are incident with v~ and are not incident with any vj ( j #  i). Clearly 
r 

~ y i<=l - r  2. 

It is easily checked that the number of copies of T in G~ that contain/- t  does 

not exceed 

N ( H ( y , , . . . ,  y,), H(sl  - r, . . . .  sr - r)) <= NS, (l - r 2, H(sl  - r,. . . ,  s, - r)). 

Combining this with part (i) of the lemma, we obtain part (ii). [] 

PROOF OF THEOREM 4. Suppose sl ->_. • • => Sr > r -->_ 2, (sl - s,) 2 < s~ + s, - 2r. 

Put H = H(r  * r), T = H(S l , . . . ,  s,). By Lemma 2 

N(l, T) >- g(l, t). 

Let Gt be a graph. In order to complete the proof, we must show that 

N(G,,  T) <= g(l, T). 
By Theorem 3 

N(O,,  H)  <= g(l, n ) .  

By part (ii) of Lemma 9, for all sufficiently large l, 

x(g, ; T,n)<=x(l,r,s~ . . . .  ,s,). 

Combining these two inequalities with Lemma 1 and part (iii) of Lemma 9, we 

find that for all sufficiently large l 

N ( G " T ) < N ( G " H ) ' x ( G ~ ; T ' H ) <  N ( T , H )  =g( l ,T) .  [] = N(T,  H)  = g( l ,H) ,  x(l,r, s t , . . . , s , )  

5. Disjoint unions of two stars 

Our aim in this section is to determine N(l, H(s, t)) for all l, s, t _-> 1. Clearly 

N(l, H(1, 1))= (~). In the sequel we shall exclude this trivial case. 

Define, for s > t > 1, s > 2 and l > 0 

[(l, s, t) = NS2(l, H(s, t)) 

= max{N(n(v ,  l - v), n ( s ,  t)): [//2] <- v =< l} 

[ " [1/2]). ([1~2]) if s = t ,  l(s 
m a x / [ ( v ]  " ( l - v ) + ( : ) ' ( l : v ) ] : [ I / 2 ] < = v < = l }  if s > t .  

. t t \ s /  t 
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THEOREM 5. I f  S >-_ t >-_ 1, s > 2 and l > 0, then 

N(l, n(s,  T)) = f(l, s, t). 

We first need a few more notations and lemmas. We call two vertices xl, x2 of 

a graph G equivalent if there is an automorphism of G that maps x, onto x2. 

Obviously, this is an equivalence relation on V(G). A system of representatives 

of the equivalence classes is called an SRV of G. 

If G, T are graphs, y E V(G) and z E V(T), let N ( G , y ;  T,z) denote the 

number of subgraphs of G that contain y and are isomorphic to T with an 

isomorphism that carries y to z. 

In this section we denote the vertices of H(s, t) by aj, a2, b, . . . .  , bs, c~, . . . ,  c,. 

al is joined by edges to b j , . . . ,b~ ,  and a2 is joined to c , , . . . , c , .  

We begin with two simple lemmas. 

LEMMA 10. Let H1, H2, . . . ,H,  be n pairwise nonisomorphic graphs, each 
having k edges. Then, for every graph G~ with l edges: 

PROOF. Obvious .  

LEMMA 11. Let G, H be graphs, y E V(G),  G '  = G - y, 

{xl, x2,...,  Xk} C V(H) be an SRV of H. Then 

k 

N ( G , H ) = N ( G ' ; H ) +  ~ S(G,y;H,x , ) .  
i = 1  

PROOF. This is a direct consequence of the definitions. 

and 

[] 

let 

[] 

PROOF OF THEOREM 5. Clearly 

N(l, n(s,  t)) > f(l, s, t) 

for all l > O. Thus we only have to show that 

(15) S(l, H(s, t )) <-<_ f(l, s, t) 

for a l ls ,  t such that s => t => 1, s => 2 and all 1 => 0. 

We prove (15) for every fixed t by induction on s. By Theorem 3, (15) holds for 

max(t, 2) _--- s _--- t + 1. 

Assuming it holds for s - 1, let us prove it for s (s = t + 2). Put H = H(s, t). 
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Suppose l >  0 and let G~ be a graph satisfying N ( G . H ) =  N(I ,H) .  By the 

induction hypothesis 

N(I, H(s  - 1~ t)) = f(l, s - 1, t). 

Let u be the maximal degree of a vertex of Gz. We first show that u > 1/2. Let 

v > [1/2] be a number that satisfies 

f ( l , s - l , t , :  ( s - V l ) "  (1 t v ) +  ( ~ - ~ ) ( : ) .  

Clearly we may assume that f(l, s, t) > 0 (i.e., 1 _-> s + t), since otherwise there 

is nothing to prove. Thus u > s. By Lemma 1 

f(l, s - 1, t) >= N(G,,  H(s  - 1. t)) 

N(H(s ,  t), H(s  - 1, t)) 
> N(G,,  H(s, t))" x(O, ;H(s,  t), H(s  - 1, t)) 

>--_ f(l, S, t)" - -  

S 

u - s + 1  

v - s + l  
u - s + l  

s 

u - s + l  

[ ( V s ) ( l t v ) + ( l s V ) ( ~ )  ] 

13 l - -  P 

1/2-  s + 1 
>= u- - - s~ - f  f ( l , s - l , t ) .  

(The last inequality is true since v _-> l - v and s - 1 _-> t imply 

(:) ) 
By our assumption f(l, s -  1, t ) >  0, and thus the preceding inequality implies 

that u _-> I/2. 
Let x be a vertex of degree u in Gt. Define G ' =  G{-u = G t -  x. 
The rest of the proof is divided into two cases. 

Case 1. t = 1 
In this case {al, a2, bl} is an SRV for H. By Lemma 11: 

N ( G .  H)  = N(G ' ,  H)  + N ( G .  x ; H, a~) + N ( G .  x; H, a2) + N(G,,  x ; H, bO. 

By Lemma 1 

t - - i , l  - - S  
N(G' ,  H )  _6 N(G ' ,  n ( s  - 1,1)).  - - - 7 - -  
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Obviously 

and 

N(G~,x; H,a~)< (u) " ( l -  u), 

N(G,, x ; H, al) <= u . N(G',  K(1, s)), 

N(G~, x ; H, b,) <-- N(G',  H(s - 1, 1)). 

Substituting these four inequalities into the preceding equality, we obtain 

N(G, ,H)< = (u)  . ( l -  u)+ u " N(G' ,K(I , s ) )+ N(G' ,H(s  - 1, 1)). l-s u 

By Lemma 10 

N(G',K(1,  s))+ N ( G ' , H ( s -  1, 1)) ~ (l-s u ) .  

As u >= 1/2, the last two inequalities imply 

N(G.H)<= (Us ) . ( I -u )+  u .[N(G',K(1, s))+ N ( G ' , H ( s -  1,1)) 1 

<= f(l, s, 1). 

This completes the proof of Case 1. 
Case 2. t >-_ 2 
In this case {al, a2, bl, cl} is an SRV for H. By Lemma 11 

S(O,, H) = N(G',  H) + N(G,, x : H, al) + N ( G .  x ; H, a2) 

+ N(G~, x; H, b~) + N(G~, x; H. c~). 

By Lemma 1 

Obviously 

N ( G ' , H ) < N ( G ' , H ( s - I , 1 ) ) . ( I - u - s )  1 
-- t ""~" 

mU) 
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and 

By Lemma 1 
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N(G,x;H, a2)<= (t ) " N(G',K(1, s)). 

and 

N(G,,x;H, bl)<= N(G' ,H(s-  1, t))<- N(G' ,H(s-  1, 1))" ( l -_u  1 s) .  1 
t t '  

N(G,, x;H, cl) <= 2. N(G', H(s, t - 1)) 

< , ( l - u - s )  1 
=2N(G,H(s -  1,1)). t -  1 s . ( t -  1)" 

(The factor 2 is needed only if t = 2.) 
These six inequalities imply 

N,G, , , )< (u). (l-tu)+ ( t )  N(G',K,I,s)) 

+ N(G' ,H(s-I ,1)) (1  ( l - t - s ) +  (~+s(t2_l))(l-tu ?s ) ) .  

As u >= 1/2, and as we have assumed that u - s -> t + 2, it follows that 

1 . ( l - u - s ) + { l +  2 ~ . ( l - u ? s )  
st t \t s(t-1)} t -  

2 u 

= -~ u_t+-------~+(u_t+l)s.(t_l) 

< + 3 + 3 . 4 . ( t -  1 

o 

By Lemma 10 
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The last three inequalities imply 

, 
< f(l, s, t). 

( t ) ( N ( G ' , K (  1, 

( : ) . ( , :u )  

s)) + N(G' ,  H(s  - 1, 1))) 

This completes the proof of the induction step for Case 2 and establishes 

Theorem 5. [] 

Theorem 5 determines N(l, H(s, t)) for every pair (s, t) (s => t _-> 1, s _-> 2) and 

for all l => 0 precisely but not explicitly, since it is not clear for which v the 

maximum in the formula for [(l, s, t) is attained, unless ( s -  t ) :<  s + t. (See 

Lemma 7.) The next two simple lemmas determine explicitly the asymptotic 

behaviour of N(I,H(s,  t)) for every fixed pair (s, t), s > t  > 1, as l tends to 

infinity. For every such pair define 

rs., (x) = (x s + x')/(1 + x) ~+', 

hs,,(x)= - t . x S - ' + ~ + s ' x ~ - ' - s . x  +t. 

We also let M(s, t) denote the maximum of r~,, (x) in [0, oo). (This maximum exists 
and is attained in (0, 1], since r~.,(0) = 0 and rs.,(x)= rs.,(1/x) for all x >0 . )  

Using this notation we can prove the following two lemmas, whose somewhat 

technical, rather straightforward proofs are omitted. 

LEMMA 12. 

LEMMA 13. 

For every s > t >= 1 

f(l, s, t) -- M(S,s!. t!t) p+, + O(l . . . .  1). 

(i) If  ( s - O  2<=s+t,  then 

(ii) If  (s - t): > s + t, then 

M(s , t )=  1/2 . . . .  1. 

s t 

Xo + Xo 
M(s, t )  ( l+xo)  . . . .  

where xo is the unique zero of h,.,(x) in (0,1). 

REMARK 3. For s > t _-> 1, let Xo(S, t) denote the minimal zero of hs,, in (0, 1]. 

One can easily check that 
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M(s,  t) = r,., (Xo(S, t)) for all s > t > 1, and xo(s, t) = 1 

iff (s - 0 2 =< s + t. It is easily checked that xo(s, t) > t/s for all s > t => 1, and we 

can prove that 

lim max [ Xo(S, t) - t /s I = O, 
s ~  l<=t<--s 

and that 

M ( s , t ) = s S t ' / ( s + t ) s + ' ( l + o ( 1 ) )  i f ( s - t )2 / (s+t) - - ->oo.  

We conclude this paper with a few remarks concerning Conjecture 1 stated in 

Section 3 and with another conjecture. 

CONJECTURE 2. I f  H is a disjoint union of  stars, then for every I > 0 (or at least 

for sufficiently large l), there exists a graph Gt which is a disjoint union of  stars, 
such that 

N(l,  H )  = N ( G .  H) .  

Conjecture 2 holds trivially if H i s  I ( k ) -  a disjoint union of isolated edges - -  

or if H is a star. It also holds if H is a disjoint union of two stars - -  by Theorem 5 

- -  and if H is HE(r,  k),  where [k/r] >= r - -  by Theorem 3. By Theorem 4 the 

conjecture holds for all sufficiently large l if H = H(st  . . . .  , s,), where s~ => • • • => 

s, > r and (s~ - st) ~ < s~ + sr - 2r. 

Very recently, Z. Ffiredi [3] proved that the conjecture holds for all sufficiently 

large l if H contains no stars of size 1. 

Conjecture 1 holds for every a.e.c, graph H - -  by Theorem B - -  and for every 

disjoint union of stars - -  by Theorem 2. We can also prove that Conjecture 1 

holds for the following graphs /4. 

(1) Every tree of diameter three without 2-valent vertices. 

(2) Every graph H obtained by adding edges to a graph T = H(Sl,  s2 . . . .  , st), 
where st > s2 > "  .. > sr > r and (Sl - st) 2 < st + s, - 2r (see Theorem 4), provided 

that every additional edge contains at least one multi-valent vertex of T. (For 

example, every complete bipartite graph K(r, s), where s ~_ r 2 + r, is such an H.) 

(3) Every tree with fewer than 6 edges. 
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