ON THE NUMBER OF CERTAIN SUBGRAPHS CONTAINED IN GRAPHS WITH A GIVEN NUMBER OF EDGES

BY
NOGA ALON
School of Mathematical Sciences, Tel Aviv University, Ramat Aviv, Israel

Abstract

All graphs considered are finite, undirected, with no loops, no multiple edges and no isolated vertices. For two graphs G, H, let $N(G, H)$ denote the number of subgraphs of G isomorphic to H. Define also, for $l \geqq 0, N(l, H)=$ $\max N(G, H)$, where the maximum is taken over all graphs G with l edges. We determine $N(l, H)$ precisely for all $l \geqq 0$ when H is a disjoint union of two stars, and also when H is a disjoint union of $r \geqq 3$ stars, each of size s or $s+1$, where $s \geqq r$. We also determine $N(l, H)$ for sufficiently large l when H is a disjoint union of r stars, of sizes $s_{1} \geqq s_{2} \geqq \cdots \geqq s_{r}>r$, provided $\left(s_{1}-s_{r}\right)^{2}<s_{1}+s_{r}-2 r$. We further show that if H is a graph with k edges, then the ratio $N(l, H) / l^{k}$ tends to a finite limit as $l \rightarrow \infty$. This limit is non-zero iff H is a disjoint union of stars.

1. Introduction

All graphs considered are finite, undirected, with no loops, no multiple edges and no isolated vertices. For two graphs G, H, let $N(G, H)$ denote the number of subgraphs of G isomorphic to H. Define also, for $l \geqq 0, N(l, H)=\max N(G, H)$, where the maximum is taken over all graphs G with l edges.

Erdös and Hanani [2] determined $N(l, H)$ explicitly when H is a complete graph. We investigated in [1] the asymptotic behaviour of $N(l, H)$ for fixed H as l tends to infinity. Here we determine $N(l, H)$ precisely for all $l \geqq 0$ when H is a disjoint union of two stars (Theorem 5) and also when H is a disjoint union of $r \geqq 3$ stars, each of size s or $s+1$, where $s \geqq r$ (Theorem 3). We also determine $N(l, H)$ for sufficiently large l when H is a disjoint union of r stars of sizes $s_{1} \geqq s_{2} \geqq \cdots \geqq s_{1}>r$, provided $\left(s_{1}-s_{r}\right)^{2}<s_{1}+s_{r}-2 r$ (Theorem 4). We further
show that if H is a graph with k edges, then the ratio $N(l, H) / l^{k}$ tends to a finite limit as $l \rightarrow \infty$. This limit is non-zero iff H is a disjoint union of stars (Theorems $1,2)$.

2. Notation and definitions

For every set $A,|A|$ is the cardinality of $A . G_{l}$ is a graph with l edges. For every graph $G, V(G)$ is the set of vertices of G and $E(G)$ is its set of edges. If $e \in E(G)$, the set $N(e)$ of neighbours of e is the set of all edges $f \in E(G) \backslash\{e\}$ that are adjacent to e, and the degree of e is $d(e)=|N(e)|$.

For $S \subset V(G)$, define $N(S)=\{x \in V(G): x y \in E(G)$ for some $y \in S\}$. Define also $\delta(G)=\max \{|S|-|N(S)|: S \subset V(G)\}, \gamma(G)=\frac{1}{2}(|V(G)|+\delta(G))$. If $x \in V(G), G-x$ is the subgraph of G consisting of the edges of G not incident with x and their vertices.

If G, H, T are graphs and H is a subgraph of T, let $x(G ; T, H)$ denote the maximal number r, such that there exist r subgraphs of G isomorphic to T whose intersection includes a subgraph isomorphic to $H .(x(G ; T, H)=0$ if G contains no copy of H.) The operational meaning of this definition is: If H^{\prime} is a copy of H in G, then H^{\prime} can be extended to a copy of T in G in at most $x(G ; T, H)$ ways.
$I(k)$ is the graph consisting of k independent edges and $K(1, k)$ is the star consisting of k edges incident with one common vertex. Since we do not allow isolated vertices, we agree that $K(1,0)$ is the empty graph.

For nonnegative numbers $j_{1}, s_{1}, j_{2}, s_{2}, \ldots, j_{k}, s_{k}, H\left(j_{1} * s_{1}, j_{2} * s_{2}, \ldots, j_{k} * s_{k}\right)$ is the disjoint union of $j_{1}+\cdots+j_{k}$ stars: j_{1} of type $K\left(1, s_{1}\right), j_{2}$ of type $K\left(1, s_{2}\right), \ldots, j_{k}$ of type $K\left(1, s_{k}\right)$. If the multiplicity j_{i} is 1 , we write s_{i} instead of $1 * s_{i}$. We also let $H E(r, l)$ denote the graph with l edges which is the disjoint union of r stars, each having [l/r] or $\lceil l / r\rceil$ edges. Note that

$$
H(j *(s+1),(r-j) * s)=H E(r, r s+j)
$$

and

$$
H E(r, l)=H([l / r],[(l+1) / r], \ldots,[(l+r-1) / r]) .
$$

If H is any disjoint union of r stars and $l \geqq 0$, define

$$
\begin{equation*}
g(l, H)=N(H E(r, l), H) \tag{1}
\end{equation*}
$$

In particular, define for $r \geqq j \geqq 1$ and $s \geqq 0$

$$
\begin{equation*}
g(l, r, j, s)=g(l, H(j *(s+1),(r-j) * s)) \tag{2}
\end{equation*}
$$

3. An extremal property of unions of stars

One of the main results obtained in [1] is the following:
Theorem A (Theorem 5 in [1]). For every graph H there are positive constants c_{1}, c_{2} such that $c_{1} l^{\gamma(H)} \leqq N(l, H) \leqq c_{2} l^{\gamma(H)}$ for all $l \geqq|E(H)|$.

By the definition of $\gamma(H)$, for every graph H

$$
\begin{equation*}
\gamma(H) \geqq \frac{1}{2}|V(H)| \tag{3}
\end{equation*}
$$

The extremal graphs H for which equality holds in (3) were called a.e.c. graphs in [1]. The asymptotic behaviour of $N(l, H)$ for such graphs was determined quite precisely as follows:

Theorem B (Theorem 4 in [1]). If H is a.e.c., then

$$
N(l, H)=\left(1+O\left(l^{-1 / 2}\right)\right) \cdot \frac{1}{|\operatorname{Aut} H|} \cdot(2 l)^{\mid V(H) / 2},
$$

where \mid Aut $H \mid$ is the number of automorphisms of H.
The following simple theorem characterizes the extremal graphs for the opposite inequality for $\gamma(H)$.

Theorem 1. For every graph H

$$
\begin{equation*}
\gamma(H) \leqq|E(H)| \tag{4}
\end{equation*}
$$

and equality holds if and only if H is a disjoint union of stars.
Proof. The theorem can be proved quite easily directly from the definition of $\gamma(H)$. However, we prefer to derive it from Theorem A.

Obviously, for every graph H :

$$
N(l, H) \leqq\binom{ l}{|E(H)|} \leqq \frac{1}{|E(H)|!} l^{|\mathrm{E}(H)|}
$$

This, together with Theorem A, implies the validity of (4).
Suppose H is a disjoint union of r stars. For every l, put $G_{l}=H E(r, l)$. One can easily verify that there is a positive constant c such that

$$
N(l, H) \geqq N\left(G_{l}, H\right) \geqq c \cdot l^{|\mathrm{E}(H)|}
$$

for all sufficiently large l. Combining this with Theorem A, we get

$$
|E(H)| \leqq \gamma(H)
$$

and therefore $\gamma(H)=|E(H)|$.

Now suppose, conversely, that H is not a disjoint union of stars. Then there is an edge $e \in E(H)$ incident with two vertices of degrees $\geqq 2$. Put $H^{\prime}=H-e$. Obviously $\left|V\left(H^{\prime}\right)\right|=|V(H)|, \delta\left(H^{\prime}\right) \geqq \delta(H)$ and thus $\gamma\left(H^{\prime}\right) \geqq \gamma(H)$.

Therefore, using inequality (4) for H^{\prime}, we conclude that

$$
\gamma(H) \leqq \gamma\left(H^{\prime}\right) \leqq\left|E\left(H^{\prime}\right)\right|<|E(H)|,
$$

i.e., inequality (4) is strict for H.

In view of Theorems A and B , the following conjecture seems quite natural.
Conjecture 1. For every graph H there is a positive constant $b(H)$ such that

$$
\lim _{i \rightarrow \infty} N(l, H) / l^{\gamma(H)}=b(H) .
$$

By Theorem B, Conjecture 1 holds if H is a.e.c. The next theorem shows that it holds also if H is a disjoint union of stars.

Theorem 2. (i) Let H be a graph with k edges. For $l \geqq k$ define

$$
h(l)=N(l, H) /\binom{l}{k} .
$$

Then $h(l)$ is a monotone non-increasing function of l for $l \geqq k$.
(ii) If H is a disjoint union of stars, then the limit

$$
\lim _{i \rightarrow \infty} N(l, H) / l^{r(H)}
$$

exists and is a positive finite number.
Proof. (i) Suppose $l>m \geqq k$, and let G_{l} be a graph such that $N(l, H)=$ $N\left(G_{l}, H\right)$. Let S be the set of all ordered pairs (K, M), where M is a subgraph of G_{l} with m edges and K is a subgraph of M isomorphic to H. Clearly

$$
|S|=N(l, H) \cdot\binom{l-k}{m-k},
$$

and

$$
|S| \leqq\binom{ l}{m} \cdot N(m, H) .
$$

Therefore,

$$
N(m, H) \geqq N(l, H) \cdot\binom{l-k}{m-k} /\binom{l}{m}=N(l, H) \cdot\binom{m}{k} /\binom{l}{k},
$$

and $h(m) \geqq h(l)$, as needed.
(ii) By part (i) of the theorem, the limit

$$
\lim _{l \rightarrow \infty} N(l, H) / l^{|E(H)|}
$$

exists for every graph H. By Theorem A and Theorem 1, this limit is positive iff H is a disjoint union of stars (and in this case $\gamma(H)=|E(H)|$), and is zero otherwise.

By Theorem 1 the disjoint unions of stars form, in a sense, a class dual to the class of a.e.c. graphs. In the next sections we compute $N(l, H)$ precisely for various graphs H in this class.

4. Disjoint unions of stars of nearly equal sizes

In this section we prove the following two theorems:
Theorem 3. If $r \geqq 1$ and $k \geqq r^{2}$ or $k=r^{2}-r+1$, then

$$
\begin{gather*}
N(l, H E(r, k))=N(H E(r, l), H E(r, k)) \tag{5}\\
(=g(l, H E(r, k))-\operatorname{see}(1)) \quad \text { for all } l \geqq 0 .
\end{gather*}
$$

(Recall that if $k=r \cdot s+j, 1 \leqq j \leqq r$, then $g(l, H E(r, k))$ is denoted by $g(l, r, j, s)$ - see (2).)

Theorem 4. If $s_{1} \geqq s_{2} \geqq \cdots \geqq s_{r}>r \geqq 2$ and $\left(s_{1}-s_{r}\right)^{2}<s_{1}+s_{r}-2 r$, then there exists an l_{0} such that for all $l>l_{0}$,

$$
\begin{gather*}
N\left(l, H\left(s_{1}, s_{2}, \ldots, s_{r}\right)\right)=N\left(H E(r, l), H\left(s_{1}, s_{2}, \ldots, s_{r}\right)\right) \tag{6}\\
\left(=g\left(l, H\left(s_{1}, s_{2}, \ldots, s_{r}\right)\right)-\operatorname{see}(1)\right) .
\end{gather*}
$$

Remark 1. If $k<r \log r$ and $H=H E(r, k)$, then $N(l, H) \neq N(H E(r, l), H)$, since in this case $N(H E(r+1, l), H)>N(H E(r, l), H)$ for sufficiently large l. (This can be proved by computations similar to those appearing in the next remark.) Thus the condition $k \geqq r^{2}$ in Theorem 3 is not entirely superfluous (although it is probably not best possible).

Remark 2. (i) One can easily check that if $H=H\left(s_{1}, s_{2}, \ldots, s_{r}\right)$, $(r \geqq 1$, $\left.s_{t} \geqq s_{2} \geqq \cdots \geqq s_{r} \geqq 2\right)$ and $k=|E(H)|\left(=s_{1}+\cdots+s_{r}\right)$, then

$$
N(H E(r, l), H)=\frac{r!}{|\operatorname{Aut} H|}\left(\frac{l}{r}\right)^{k} \cdot\left(1+O\left(l^{-1}\right)\right) .
$$

(Note that \mid Aut $H \mid \cdot N(H E(r, l), H)$ is the number of embeddings of H into $H E(r, l)$.)

Therefore, if H falls within the scope of Theorem 4, then the value of the limit

$$
\lim _{l \rightarrow \infty} N(l, H) / l^{k}
$$

whose existence was proved in Theorem 2, is $r!/\left(r^{k} \mid\right.$ Aut $\left.H \mid\right)$.
(ii) Theorem 5 in Section 5 and Lemma 7 of this section show that for $r=2$ the assertion of Theorem 4 holds iff $s_{1} \geqq s_{2} \geqq 1$ and $\left(s_{1}-s_{2}\right)^{2}<s_{1}+s_{2}$, except for $s_{1}=s_{2}=1$.

We begin with some lemmas. After Lemma 2 we shall briefly outline the strategy of the proof of Theorems 3 and 4.

Lemma 1. If G, T, H are graphs and H is a subgraph of T, then

$$
N(G, T) \leqq N(G, H) \cdot \frac{x(G ; T, H)}{N(T, H)} .
$$

Proof. Let S be the set of all ordered pairs (A, B), where B is a subgraph of G isomorphic to T, and A is a subgraph of B isomorphic to H. Obviously

$$
|S|=N(G, T) \cdot N(T, H)
$$

and

$$
|S| \leqq N(G, H) \cdot x(G ; T, H)
$$

This clearly implies the desired result.
Lemma 2. If H is any disjoint union of stars, then

$$
N(l, H) \geqq g(l, H)
$$

for all $l \geqq 0$.
Proof. Obvious.
We shall prove Theorem 3 according to the following scheme: First we prove (Lemma 5) that for $H=H(r * s)$ and all $G_{l}, N\left(G_{l}, H\right) \leqq N(H E(r, l), H)$. This proves Theorem 3 for disjoint unions of equal stars. (In order to perform the induction, we are forced to consider at the same time also the graphs $H(s+1,(r-1) * s)$.)

In order to prove Theorem 3 for $T=H(j *(s+1),(r-j) * s)$, we show that for all $G_{l}, x\left(G_{l}, T, H\right) \leqq x(H E(r, l) ; T, H)$, and use Lemma 1. Lemma 1 holds as equality for $G_{l}=H E(r, l)$.

The structure of the proof of Theorem 4 is similar.

Lemma 3. Let H be a graph. For every $e \in E(H)$, let $S(e)$ denote the subgraph of H spanned by $N(e)$ and let $T(e)$ denote the subgraph of H spanned by $E(H) \backslash\{N(e) \cup\{e\}\}$. Define an equivalence relation \sim on $E(H)$ as follows: $e \sim e^{\prime}$ iff $S(e)$ and $T(e)$ are isomorphic to $S\left(e^{\prime}\right)$ and $T\left(e^{\prime}\right)$, respectively. Let $e_{1}, e_{2}, \ldots, e_{q}$ be a system of representatives of the equivalence classes of $E(H)$. Define

$$
L(H)=\left\{\left(S_{1}, T_{1}\right),\left(S_{2}, T_{2}\right), \ldots,\left(S_{q}, T_{q}\right)\right\}
$$

where $S_{i}=S\left(e_{i}\right), T_{i}=T\left(e_{i}\right)$ for $1 \leqq i \leqq q$. Denote by γ_{i} the number of edges of H equivalent to e_{i}. Let $c_{1}, c_{2}, \ldots, c_{q}$ be non-negative real numbers whose sum is 1 .
(i) If $G=G_{i}$ is a graph with ledges f_{1}, \ldots, f_{1} and $d_{j}=d\left(f_{i}\right)$ for $1 \leqq j \leqq l$, then

$$
\begin{equation*}
N\left(G_{l}, H\right) \leqq \sum_{j=1}^{l} \sum_{i=1}^{q} \frac{c_{i}}{\gamma_{i}} N\left(d_{j}, S_{i}\right) \cdot N\left(l-1-d_{i}, T_{i}\right) . \tag{7}
\end{equation*}
$$

(ii)

$$
N(l, H) \leqq l \cdot \max \left\{\sum_{i=1}^{q} \frac{c_{i}}{\gamma_{i}} N\left(k, S_{i}\right) \cdot N\left(l-1-k, T_{i}\right): 0 \leqq k \leqq l-1\right\} .
$$

Proof. Part (ii) follows immediately from part (i). To prove (i) fix $i, 1 \leqq i \leqq q$ and denote by F the set of all ordered pairs (f, A), where A is a subgraph of G, $f \in E(A)$, and A is isomorphic to H by an isomorphism that carries f to one of the γ_{i} edges of H equivalent to e_{i}. Clearly

$$
\begin{equation*}
|F|=N(G, H) \cdot \gamma_{i} \tag{8}
\end{equation*}
$$

Let f_{i} be a fixed edge of G. If $\left(f_{i}, A\right) \in F$, then clearly $E(A) \cap N\left(f_{j}\right)$ is a copy of S_{i} and $E(A) \cap\left(E(G) \backslash\left(N\left(f_{i}\right) \cup\left\{f_{j}\right\}\right)\right)$ is a copy of T_{i}. (Here $N\left(f_{i}\right)$ denotes, of course, the set of edges of G adjacent to f_{j}.) Thus, the number of pairs $\left(f_{i}, A\right) \in F$ does not exceed

$$
N\left(d_{i}, S_{i}\right) \cdot N\left(l-1-d_{j}, T_{i}\right)
$$

This shows that

$$
|F| \leqq \sum_{j=1}^{l} N\left(d_{j}, S_{i}\right) \cdot N\left(l-1-d_{j}, T_{i}\right) .
$$

From this and (8) we obtain

$$
N\left(G_{l}, H\right) \leqq \sum_{i=1}^{l} \frac{1}{\gamma_{i}} N\left(d_{i}, S_{i}\right) N\left(l-1-d_{j}, T_{i}\right) .
$$

Since the last inequality holds for each $i, 1 \leqq i \leqq q$, it implies (7).

The following technical lemma is used in the proof of Theorem 3. We omit its (easy) proof.

Lemma 4. Let l, r, s, x be integers, $r>0, s>0, l \geqq(r+1) s, 0 \leqq x<l-1$.
(i) Define

$$
h(x)=\binom{x}{s-1} \prod_{i=0}^{r-1}\left(\left[\frac{l-1-x+i}{r}\right]\right) .
$$

If $x \geqq l /(r+1)-1$, then $h(x+1) \leqq h(x)$.
(ii) Put $x=\lceil l /(r+1)\rceil-1$; then

$$
\begin{aligned}
g(l, r+1, r+1, s-1)= & \binom{x}{s-1} g(l-1-x, r, r, s-1) \\
& +g(l-1, r+1, r+1, r+1, s-1) .
\end{aligned}
$$

(See (2).)
(iii)

$$
g(l, r+1, r+1, s-1) \geqq g(l, r+1,1, s-1) \cdot \frac{([l /(r+1)]-(s-1))^{r}}{(r+1) \cdot s^{r}}
$$

The next lemma proves Theorem 3 if $k \equiv 0$ or $1(\bmod r)$.
LEMmA 5. (i) If $s \geqq r \geqq 0$, then

$$
N(l, H(s+1, r * s))=g(l, r+1,1, s)\left(=\frac{l-(r+1) \cdot s}{s+1} \prod_{i=0}^{\prime}\binom{\left[\frac{l+i}{r+1}\right]}{s}\right)
$$

for all $l>0$.
(ii) If $s \geqq r+1 \geqq 1$, then

$$
N(l, H((r+1) * s))=g(l, r+1, r+1, s-1)\left(=\prod_{i=0}^{r}\left(\begin{array}{c}
{\left[\frac{l+i}{r+1}\right]} \\
s
\end{array}\right]\right)
$$

for all $l \geqq 0$.
(Note that the graphs in Lemma 5 are unions of $r+1$ stars, not r.)
Proof. By Lemma 2

$$
N(l, H(s+1, r * s)) \geqq g(l, r+1,1, s),
$$

and

$$
N(l, H((r+1) * s)) \geqq g(l, r+1, r+1, s-1)
$$

for all $s \geqq r \geqq 0$ and $l \geqq 0$.

To complete the proof we show, by induction on r, that
(9) $\left.N(l, H(s+1, r * s)) \leqq g(l, r+1,1, s)\left(=\frac{l-(r+1) s}{s+1} \cdot \prod_{i=0}^{r}\left(\begin{array}{c}{\left[\frac{l+i}{r+1}\right]} \\ s\end{array}\right]\right)\right)$
and

$$
N(l, H((r+1) * s)) \leqq g(l, r+1, r+1, s-1)\left(=\prod_{i=0}^{r}\left(\begin{array}{c}
{\left[\frac{l+i}{r+1}\right]} \tag{10}\\
s
\end{array}\right]\right)
$$

For $r=0$, (9) and (10) are trivial. Assuming they hold for $r-1$, we shall prove them for $r(r \geqq 1)$ according to the following scheme:
(i) $(9)_{r-1} \&(10)_{r-1} \Rightarrow(9)_{r}$.
(ii) $(10)_{r-1} \&(9)_{r} \Rightarrow(10)_{r}$.
(i) Suppose $s \geqq r$. If $l \leqq(r+1) \cdot s$, (9) is trivial. Thus we may assume that $l>(r+1) \cdot s$. Put $H=H(s+1, r * s)$. Using the notation of Lemma 3

$$
L(H)=\left\{\left(K_{1, s}, H(r * s)\right),\left(K_{1, s-1}, H(s+1,(r-1) * s)\right)\right\}
$$

and $\gamma_{1}=s+1, \gamma_{2}=r \cdot s$. Applying part (ii) of Lemma 3 with $c_{1}=(l-r \cdot s) / l$, $c_{2}=r \cdot s / l$, we obtain

$$
\begin{aligned}
& N(l, H) \leqq l \max \left\{\frac{c_{1}}{s+1} \cdot N\left(k, K_{1, s}\right) \cdot N(l-1-k, H(r * s))\right. \\
& +\frac{c_{2}}{r s} N\left(k, K_{1, s-1}\right) \cdot N(l-1-k, H(s+1,(r-1) * s)): \\
& 0 \leqq k \leqq l-1\} \text {. }
\end{aligned}
$$

Put $y=l-1-k$. By the induction hypothesis, the last inequality implies

$$
\begin{aligned}
N(l, H) \leqq & l \max \left\{\frac{c_{1}}{s+1} \cdot\binom{k}{s} \cdot \prod_{i=0}^{r-1}\left(\left[\begin{array}{c}
\frac{y+i}{r} \\
s
\end{array}\right]\right)\right. \\
& \left.+\frac{c_{2}}{r \cdot s}\binom{k}{s-1} \cdot \frac{y-r s}{s+1} \prod_{i=0}^{r-1}\left(\left[\begin{array}{c}
\frac{y+i}{r} \\
s
\end{array}\right]\right): 0 \leqq k \leqq l-1\right\} \\
= & \max \left\{\frac{l-(r+1) \cdot s}{s+1} \cdot\binom{k+1}{s} \cdot \prod_{i=0}^{r-1}\left(\left[\begin{array}{c}
\frac{y+i}{r} \\
s
\end{array}\right]\right): 0 \leqq k \leqq l-1\right\} \\
= & \left.\frac{l-(r+1) s}{s+1} \cdot \prod_{i=0}^{r}\left(\begin{array}{c}
\frac{l+i}{r+1} \\
s
\end{array}\right]\right) .
\end{aligned}
$$

(The last equality holds since the maximum of $\prod_{i=0}^{r}\binom{x_{i}}{5}$, where x_{0}, \ldots, x, are nonnegative integers whose sum is preassigned, is attained when the difference between any two $x_{i}-s$ does not exceed 1.) The last inequality is just (9).
(ii) Suppose $s \geqq r+1$. We prove (10) by induction on l. If $l<(r+1) \cdot s$, (10) is trivial. Assume (10) holds for $l-1$, and let G_{l} be a graph $(l \geqq(r+1) \cdot s)$. To complete the proof we must show that

$$
\begin{equation*}
N\left(G_{l}, H\right) \leqq g(l, r+1, r+1, s-1) \tag{11}
\end{equation*}
$$

where

$$
H=H((r+1) * s)
$$

Let e be an edge of maximal degree in G_{l} and put $d=d(e)$. We consider two possible cases.

Case I. $\quad d \geqq\lceil l /(r+1)\rceil-1$
In this case the number N_{1} of copies of H in G_{l} that contain e does not exceed

$$
\binom{d}{s-1} \cdot N(l-1-d, H(r * s))
$$

By the induction hypothesis

$$
N_{1} \leqq\binom{ d}{s-1} \prod_{i=0}^{r-1}\left(\left[\frac{l-1-d+i}{r}\right]\right)
$$

and by part (i) of Lemma 4

$$
N_{1} \leqq\binom{ x}{s-1} \cdot \prod_{i=0}^{r-1}\left(\left[\frac{l-1-x+i}{r}\right]\right)=\binom{x}{s} \cdot g(l-1-x, r, r, s-1)
$$

where

$$
x=\lceil l /(r+1)\rceil-1
$$

Let N_{2} be the number of copies of H that do not contain e. By the induction hypothesis

$$
N_{2} \leqq g(l-1, r+1, r+1, s-1)
$$

Combining the last three formulas with part (ii) of Lemma 4, we obtain

$$
\begin{aligned}
N\left(G_{l}, H\right)=N_{1}+N_{2} & \leqq\binom{ x}{s-1} g(l-1-x, r, r, s-1)+g(l-1, r+1, r+1, s-1) \\
& =g(l, r+1, r+1, s-1)
\end{aligned}
$$

which is the required inequality (11).

Case II. $d \leqq\lceil l /(r+1)]-2 \leqq[l /(r+1)]-1$
In this case the degree of every edge of G_{l} does not exceed $[l /(r+1)]-1$. It follows that

$$
x\left(G_{l} ; K(1, s), K(1, s-1)\right) \leqq[l /(r+1)]-1-(s-2)=[l /(r+1)]-(s-1)
$$

(see Section 2 for the definition of $x(G ; T, H)$), and thus

$$
x\left(G_{l} ; H, H(s, r *(s-1))\right) \leqq([l /(r+1)]-(s-1))^{\prime}
$$

This, together with Lemma 1, relation (9) (with s replaced by $s-1$), and part (iii) of Lemma 4, implies

$$
\begin{aligned}
N\left(G_{l}, H\right) & \leqq N\left(G_{l}, H(s, r *(s-1))\right) \cdot([l /(r+1)]-(s-1))^{r} /(r+1) \cdot s^{r} \\
& \leqq g(l, r+1,1, s-1) \cdot([l /(r+1)]-(s-1))^{r} /(r+1) \cdot s^{r} \\
& \leqq g(l, r+1, r+1, s-1)
\end{aligned}
$$

as needed.
This settles Case II and thus completes part (ii) of the induction on r.
Lemma 6. For $s \geqq r \geqq j \geqq 1$ and $l \geqq r \cdot s$, let

$$
x(l, r, j, s)=x(H E(r, l) ; H(j *(s+1),(r-j) * s), H(r * s))
$$

(i) If G_{l} is a graph, then

$$
x\left(G_{l} ; H(j *(s+1),(r-j) * s), H(r * s)\right) \leqq x(l, r, j, s)
$$

(ii) $g(l, r, j, s)=g(l, r, r, s-1) \cdot x(l, r, j, s) /(s+1)^{j}$.

Proof. Put $H=H(r * s)$ and $T=H(j *(s+1),(r-j) * s)$.
(i) Let \bar{H} be a copy of H in G_{l}. Let e_{1}, \ldots, e_{r} be r independent edges in \bar{H}. For every $1 \leqq i \leqq r$, let y_{i} be the number of edges in $E\left(G_{l}\right) \backslash E(\bar{H})$ that are adjacent to e_{i} and are not adjacent to any $e_{j}(j \neq i)$. Clearly

$$
\begin{equation*}
\sum_{i=1}^{r} y_{i} \leqq l-r \cdot s \tag{12}
\end{equation*}
$$

It is easily checked that the number of copies of T in G_{l} that contain \bar{H} does not exceed

$$
\sum\left\{y_{i}, y_{i} \cdots y_{i j}: 1 \leqq i_{1}<i_{2}<\cdots<i_{j} \leqq r\right\} .
$$

An easy computation shows that the last sum, in which the $y_{i}-s$ are nonnegative integers that satisfy (12), attains its maximum when the difference between
any two $y_{i}-s$ does not exceed 1 , and their sum is $l-r$. Since this maximum is precisely $x(l, r, j, s)$, we conclude that

$$
x\left(G_{l} ; T, H\right) \leqq x(l, r, j, s)
$$

as needed.
(ii) Put $G=H E(r, l)$. By definition

$$
N(G, H)=g(l, r, r, s-1)
$$

and

$$
N(G, T)=g(l, r, j, s)
$$

Clearly

$$
N(T, H)=(s+1)^{j}
$$

and every copy of H in G is included in precisely $x(l, r, j, s)$ copies of T in G. Thus

$$
N(G, H) \cdot x(l, r, j, s)=N(G, T) \cdot N(T, H)
$$

which, together with the previous three equalities, implies the validity of (ii).
Proof of Theorem 3. Suppose $s \geqq r \geqq j \geqq 1$. Put $H=H(r * s)$ and $T=$ $H(j *(s+1),(r-j) * s)$. By Lemma 2

$$
N(l, T) \geqq g(l, r, j, s)
$$

Let G_{l} be a graph. In order to complete the proof, we must show that

$$
N\left(G_{l}, T\right) \leqq g(l, r, j, s)
$$

If $l<r \cdot s$, this is trivial. Thus we may assume that $l \geqq r \cdot s$. By part (ii) of Lemma 5

$$
N\left(G_{l}, H\right) \leqq g(l, r, r, s-1)
$$

By part (i) of Lemma 6

$$
x\left(G_{l} ; T, H\right) \leqq x(l, r, j, s)
$$

Clearly

$$
N(T, H)=(s+1)^{j}
$$

Combining the last three formulas with Lemma 1 and part (ii) of Lemma 6, we obtain

$$
N\left(G_{l}, T\right) \leqq \frac{N\left(G_{l}, H\right) \cdot x\left(G_{l} ; T, H\right)}{N(T, H)} \leqq \frac{g(l, r, r, s-1) \cdot x(l, r, j, s)}{(s+1)^{i}}=g(l, r, g, s)
$$

In order to prove Theorem 4, we need another definition and three lemmas. If H is a graph, $r>0$ and $l \geqq 0$, define $N S_{r}(l, H)=\max N(G, H)$, where the maximum is taken over all graphs G with l edges that are disjoint unions of r stars.

Lemma 7. Suppose $s \geqq t \geqq 1$.
(i) If

$$
\begin{equation*}
(s-t)^{2}<s+t \tag{13}
\end{equation*}
$$

then for $l>l_{0}(s, t)$,

$$
\begin{equation*}
N S_{2}(l, H(s, t))=g(l, H(s, t)) . \tag{14}
\end{equation*}
$$

(ii) If $(s-t)^{2} \geqq s+t$, then for all $l \geqq s+t$,

$$
N S_{2}(l, H(s, t))>g(l, H(s, t)) .
$$

Proof. (i) An easy computation shows that if $s=t$, then (14) holds for all $l \geqq 0$. Thus we assume that $s>t$. Clearly, if $l \geqq s+t$, then

$$
\begin{aligned}
& N S_{2}(l, H(s, t))=\max \left\{\binom{l / 2-\varepsilon}{s}\binom{l / 2+\varepsilon}{t}+\binom{l / 2-\varepsilon}{t}\binom{l / 2+\varepsilon}{s}:\right. \\
&0 \leqq \varepsilon \leqq l / 2-t, 2 \mid l-2 \varepsilon\}
\end{aligned}
$$

However,

$$
\binom{l / 2-\varepsilon}{s}\binom{l / 2+\varepsilon}{t}+\binom{l / 2-\varepsilon}{t}\binom{l / 2+\varepsilon}{s}=\frac{1}{s!t!} h(\varepsilon)
$$

where

$$
\begin{aligned}
h(\varepsilon) & =\prod_{i=0}^{t-1}\left(\left(\frac{l}{2}-i\right)^{2}-\varepsilon^{2}\right) \cdot\left(\prod_{k=t}^{s-1}\left(\frac{l}{2}-\varepsilon-k\right)+\prod_{k=t}^{s-1}\left(\frac{l}{2}+\varepsilon-k\right)\right) \\
& =\prod_{i=0}^{t-1}\left(\left(\frac{l}{2}-i\right)^{2}-\varepsilon^{2}\right) 2\left(s_{0}+s_{2} \varepsilon^{2}+\cdots+s_{2 r} \varepsilon^{2 r}\right),
\end{aligned}
$$

$r=[(s-t) / 2]$, and

$$
\begin{aligned}
s_{2 i} & =\sum_{t \leq j_{1}<i_{2}<\ldots<j_{2 i}<s}\left(\prod_{\substack{\begin{subarray}{c}{s \neq k<s \\
k \neq j_{1}, \ldots, j_{2 i}} }}\end{subarray}}\left(\frac{l}{2}-k\right)\right) \\
& =\binom{s-t}{2 i}\left(\frac{l}{2}\right)^{s-i-2 i} \cdot\left(1+O\left(l^{-1}\right)\right) \quad(0 \leqq i \leqq r) .
\end{aligned}
$$

We prove part (i) by showing that if $(s-t)^{2}<s+t$ and l is sufficiently large, then h is a decreasing function of ε for $0 \leqq \varepsilon \leqq l / 2-t$. Define $q(z)=h(\sqrt{z})$. Clearly

$$
q^{\prime}(z)=q(z) \cdot(-A(z)+B(z))
$$

where

$$
\begin{gathered}
A(z)=\sum_{i=0}^{t-1} \frac{1}{((l / 2)-i)^{2}-z}, \\
B(z)=\frac{s_{2}+2 s_{4} z+\cdots+r \cdot s_{2 r} \cdot z^{r-1}}{s_{0}+s_{2} z+\cdots+s_{2 r-2} z^{r-1}+s_{2 r} z^{\prime}} .
\end{gathered}
$$

By the definitions of $h(\varepsilon)$ and the coefficients $s_{2 i}, q(z)>0$ for $0 \leqq z \leqq$ $(l / 2-t)^{2}$, if $l \geqq 2 s$. Clearly $A(z) \geqq 4 t / l^{2}$ for $0 \leqq z \leqq(l / 2-t)^{2}$. We claim that if $(s-t)^{2}<s+t$ and l is sufficiently large, then

$$
\frac{i s_{2 z} z^{i-1}}{s_{2 i-2} z^{i-1}}<\frac{4 t}{l^{2}} \quad \text { for all } i, \quad 1 \leqq i \leqq r
$$

and thus $B(z)<4 t / l^{2}$. Indeed

$$
\begin{aligned}
\frac{i s_{2 i}}{s_{2 i-2}} & =\frac{i(s-t-2 i+2)(s-t-2 i+1)}{2 i(2 i-1) \cdot(l / 2)^{2}} \cdot\left(1+O\left(l^{-1}\right)\right) \\
& \leqq \frac{2(s-t)(s-t-1)}{l^{2}} \cdot\left(1+O\left(l^{-1}\right)\right)<4 t / l^{2} .
\end{aligned}
$$

We conclude that if $(s-t)^{2}<s+t$ and l is sufficiently large, then $q^{\prime}(z)<0$ for $0 \leqq z \leqq(l / 2-t)^{2}$, and thus $h(\varepsilon)$ is a decreasing function for $0 \leqq \varepsilon \leqq l / 2-t$ and (14) follows.
(ii) Suppose $(s-t)^{2} \geqq s+t$ and $l \geqq s+t$. Clearly $s \geqq 3, s-t \geqq 2$. We consider two possible cases.

Case 1. $l=2 m$ is even
If $m<s$, then

$$
N S_{2}(l, H(s, t)) \geqq 1>0=g(l, H(s, t)) .
$$

If $m \geqq s$ one can easily check that

$$
\begin{aligned}
& N S_{2}(l, H(s, t))-g(l, H(s, t)) \\
& \quad \geqq\binom{ m+1}{s}\binom{m-1}{t}+\binom{m-1}{s}\binom{m+1}{t}-2\binom{m}{s}\binom{m}{t} \\
& \quad=\frac{m!(m-1)!}{s!t!(m-s+1)!(m-t+1)!}\left(\left((s-t)^{2}-(s+t)\right) m+s(s-1)+t(t-1)\right) \\
& >0 .
\end{aligned}
$$

Case 2. $\quad l=2 m+1$ is odd
If $m+1<s$, then

$$
N S_{2}(l, H(s, t)) \geqq 1>0=g(l, H(s, t)) .
$$

If $m+1 \geqq s$, one can easily check that

$$
\begin{aligned}
& N S_{2}(l, H(s, t))-g(l, H(s, t)) \\
& \quad \geqq\binom{ m+2}{s}\binom{m-1}{t}+\binom{m-1}{s}\binom{m+2}{t}-\binom{m+1}{s}\binom{m}{t}-\binom{m}{s}\binom{m+1}{t} \\
& \quad=\frac{(m+1)!(m-1)!}{s!t!(m-s+2)!(m-t+2)!} \cdot\left(a m^{2}-b m-c\right),
\end{aligned}
$$

where

$$
\begin{gathered}
a=2\left((s-t)^{2}-(s+t)\right) \\
b=(s-t)^{2}(s+t-3)-4 s^{2}-4 t^{2}+6 s+6 t
\end{gathered}
$$

and

$$
c=2 t(t-1)(t-2)+2 s(s-1)(s-2) .
$$

Thus $a \geqq 0$, and by substituting $(s+t)+a / 2$ for $(s-t)^{2}$ in b, we obtain

$$
\begin{aligned}
a m^{2}-b m-c= & \frac{a}{2} m(2 m-s-t+4)+2 s(s-1)(m-s+2) \\
& +2 t(t-1)(m-t+2) \\
\geqq & 2 s(s-1)(m-s+2)>0 .
\end{aligned}
$$

This completes the proof of part (ii). (It is worth noting that if $(s-t)^{2}=s+t$, then $N S_{2}(l, H(s, t)) / g(l, H(s, t)) \rightarrow 1$ as $l \rightarrow \infty$, whereas if $(s-t)^{2}>s+t$, this limit is larger; this will be a consequence of Lemmas 12 and 13.)

LEmmA 8. If $s_{1} \geqq s_{2} \geqq \cdots \geqq s_{r} \geqq 1$ and $\left(s_{1}-s_{r}\right)^{2}<s_{1}+s_{r}$, then for all sufficiently large 1 ,

$$
N S_{r}\left(l, H\left(s_{1}, \ldots, s_{r}\right)\right)=g\left(l, H\left(s_{1}, \ldots, s_{r}\right)\right)
$$

Proof. One can easily check that $\left(s_{i}-s_{i}\right)^{2}<s_{i}+s_{j}$ for all $1 \leqq i<j \leqq r$. By Lemma 7 there exists an l_{0} such that

$$
N S_{2}\left(l, H\left(s_{i}, s_{i}\right)\right)=g\left(l, H\left(s_{i}, s_{j}\right)\right)
$$

holds for all $1 \leqq i<j \leqq r$ and $l>l_{0}$.

Assume that $l>r \cdot l_{0}$ and suppose that

$$
N S_{r}\left(l, H\left(s_{1}, \ldots, s_{r}\right)\right)=N\left(H\left(l_{1}, \ldots, l_{r}\right), H\left(s_{1}, \ldots, s_{r}\right)\right)
$$

where

$$
l_{1} \geqq \cdots \geqq l_{r}, \quad l_{1}+\cdots+l_{r}=l .
$$

If $l_{1}-l_{r} \leqq 1$, we have nothing to prove. Otherwise $l_{1}+l_{r}>l_{0}$. Define $l_{1}^{\prime}=$ $\left\lceil\left(l_{1}+l_{r}\right) / 2\right\rceil, l_{2}^{\prime}=\left[\left(l_{1}+l_{r}\right) / 2\right]$ and $l_{i}^{\prime}=l_{i}$ for $3 \leqq i \leqq r-1$. By Lemma 7 one can easily show that

$$
N\left(H\left(l_{1}^{\prime}, \ldots, l_{r}^{\prime}\right), H\left(s_{1}, \ldots, s_{r}\right)\right) \geqq N\left(H\left(l_{1}, \ldots, l_{r}\right), H\left(s_{1}, \ldots, s_{r}\right)\right) .
$$

Therefore

$$
N S_{r}\left(l, H\left(s_{1}, \ldots, s_{r}\right)\right)=N\left(H\left(l_{1}^{\prime}, \ldots, l_{r}^{\prime}\right), H\left(s_{1}, \ldots, s_{r}\right)\right) .
$$

By repeatedly applying this argument to pairs of $l_{i}^{\prime \prime}$ s that differ by more than one, we finally obtain that

$$
N S_{r}\left(l, H\left(s_{1}, \ldots, s_{r}\right)\right)=N\left(H E(r, l), H\left(s_{1}, \ldots, s_{r}\right)\right)=g\left(l, H\left(s_{1}, \ldots, s_{r}\right)\right)
$$

LEMMA 9. Suppose $s_{1} \geqq s_{2} \geqq \cdots \geqq s_{r}>r \geqq 2, \quad\left(s_{1}-s_{r}\right)^{2}<s_{1}+s_{r}-2 r \quad$ and define

$$
x\left(l, r, s_{1}, \ldots, s_{r}\right)=x\left(H E(r, l) ; H\left(s_{1}, \ldots, s_{r}\right), H(r * r)\right)
$$

Clearly

$$
x\left(l, r, s_{1}, \ldots, s_{r}\right)=g\left(l-r^{2}, H\left(s_{1}-r, \ldots, s_{r}-r\right)\right)
$$

provided $l \geqq r^{2}$.
(i) For all sufficiently large l

$$
x\left(l, r, s_{1}, \ldots, s_{r}\right)=N S_{r}\left(l-r^{2}, H\left(s_{1}-r, \ldots, s_{r}-r\right)\right)
$$

(ii) For all sufficiently large l and for every graph G_{l} with l edges,

$$
x\left(G_{l} ; H\left(s_{1}, \ldots, s_{r}\right), H(r * r)\right) \leqq x\left(l, r, s_{1}, \ldots, s_{r}\right)
$$

(iii)

$$
g\left(l, H\left(s_{1}, \ldots, s_{r}\right)\right)=g(l, H(r * r)) \cdot \frac{x\left(l, r, s_{1}, \ldots, s_{r}\right)}{N\left(H\left(s_{1}, \ldots, s_{r}\right), H(r * r)\right)} .
$$

Proof. Part (i) is just a restatement of Lemma 8, and the proof of part (iii) is the same as that of part (ii) of Lemma 6. To prove part (ii) put $H=H(r * r)$, $T=H\left(s_{1}, \ldots, s_{r}\right)$. Let \bar{H} be a copy of H in G_{i}. Let v_{1}, \ldots, v_{r} be the centers of the
stars of \bar{H}. For every $1 \leqq i \leqq r$, let y_{i} be the number of edges in $E\left(G_{i}\right) \backslash E(\bar{H})$ that are incident with v_{i} and are not incident with any $v_{i}(j \neq i)$. Clearly

$$
\sum_{i=1}^{r} y_{i} \leqq l-r^{2}
$$

It is easily checked that the number of copies of T in G_{l} that contain \bar{H} does not exceed

$$
N\left(H\left(y_{1}, \ldots, y_{r}\right), H\left(s_{1}-r, \ldots, s_{r}-r\right)\right) \leqq N S_{r}\left(l-r^{2}, H\left(s_{1}-r, \ldots, s_{r}-r\right)\right) .
$$

Combining this with part (i) of the lemma, we obtain part (ii).
Proof of Theorem 4. Suppose $s_{1} \geqq \cdots \geqq s_{r}>r \geqq 2,\left(s_{1}-s_{r}\right)^{2}<s_{1}+s_{r}-2 r$. Put $H=H(r * r), T=H\left(s_{1}, \ldots, s_{r}\right)$. By Lemma 2

$$
N(l, T) \geqq g(l, t) .
$$

Let G_{l} be a graph. In order to complete the proof, we must show that

$$
N\left(G_{i}, T\right) \leqq g(l, T) .
$$

By Theorem 3

$$
N\left(G_{l}, H\right) \leqq g(l, H) .
$$

By part (ii) of Lemma 9 , for all sufficiently large l,

$$
x\left(g_{l} ; T, H\right) \leqq x\left(l, r, s_{1}, \ldots, s_{r}\right) .
$$

Combining these two inequalities with Lemma 1 and part (iii) of Lemma 9, we find that for all sufficiently large l

$$
N\left(G_{l}, T\right) \leqq \frac{N\left(G_{l}, H\right) \cdot x\left(G_{l} ; T, H\right)}{N(T, H)} \leqq g(l, H) \cdot \frac{x\left(l, r, s_{1}, \ldots, s_{r}\right)}{N(T, H)}=g(l, T) .
$$

5. Disjoint unions of two stars

Our aim in this section is to determine $N(l, H(s, t))$ for all $l, s, t \geqq 1$. Clearly $N(l, H(1,1))=\binom{(2)}{2}$ In the sequel we shall exclude this trivial case.
Define, for $s \geqq t \geqq 1, s \geqq 2$ and $l \geqq 0$

$$
\begin{aligned}
& f(l, s, t)=N S_{2}(l, H(s, t)) \\
& =\max \{N(H(v, l-v), H(s, t)):\lceil l / 2\rceil \leqq v \leqq l\} \\
& = \begin{cases}\left\{\binom{[l / 2]}{s} \cdot\binom{[l / 2\rceil}{ s}\right. & \text { if } s=t, \\
\max \left\{\left[\binom{v}{s} \cdot\binom{l-v}{t}+\binom{v}{t} \cdot\binom{l-v}{s}\right]:\lceil l / 2\rceil \leqq v \leqq l\right\} & \text { if } s>t .\end{cases}
\end{aligned}
$$

Theorem 5. If $s \geqq t \geqq 1, s \geqq 2$ and $l \geqq 0$, then

$$
N(l, H(s, T))=f(l, s, t)
$$

We first need a few more notations and lemmas. We call two vertices x_{1}, x_{2} of a graph G equivalent if there is an automorphism of G that maps x_{1} onto x_{2}. Obviously, this is an equivalence relation on $V(G)$. A system of representatives of the equivalence classes is called an SRV of G.

If G, T are graphs, $y \in V(G)$ and $z \in V(T)$, let $N(G, y ; T, z)$ denote the number of subgraphs of G that contain y and are isomorphic to T with an isomorphism that carries y to z.

In this section we denote the vertices of $H(s, t)$ by $a_{1}, a_{2}, b_{1}, \ldots, b_{s}, c_{1}, \ldots, c_{t}$. a_{1} is joined by edges to b_{1}, \ldots, b_{s}, and a_{2} is joined to c_{1}, \ldots, c_{t}.

We begin with two simple lemmas.
Lemma 10. Let $H_{1}, H_{2}, \ldots, H_{n}$ be n pairwise nonisomorphic graphs, each having k edges. Then, for every graph G_{l} with l edges:

$$
\sum_{i=1}^{n} N\left(G_{i}, H_{i}\right) \leqq\binom{ l}{k}
$$

Proof. Obvious.
Lemma 11. Let G, H be graphs, $y \in V(G), \quad G^{\prime}=G-y, \quad$ and let $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\} \subset V(H)$ be an SRV of H. Then

$$
N(G, H)=N\left(G^{\prime} ; H\right)+\sum_{i=1}^{k} N\left(G, y ; H, x_{i}\right)
$$

Proof. This is a direct consequence of the definitions.

Proof of Theorem 5. Clearly

$$
N(l, H(s, t)) \geqq f(l, s, t)
$$

for all $l \geqq 0$. Thus we only have to show that

$$
\begin{equation*}
N(l, H(s, t)) \leqq f(l, s, t) \tag{15}
\end{equation*}
$$

for all s, t such that $s \geqq t \geqq 1, s \geqq 2$ and all $l \geqq 0$.
We prove (15) for every fixed t by induction on s. By Theorem 3, (15) holds for

$$
\max (t, 2) \leqq s \leqq t+1
$$

Assuming it holds for $s-1$, let us prove it for $s(s \geqq t+2)$. Put $H=H(s, t)$.

Suppose $l>0$ and let G_{i} be a graph satisfying $N\left(G_{l}, H\right)=N(l, H)$. By the induction hypothesis

$$
N(l, H(s-1, t))=f(l, s-1, t)
$$

Let u be the maximal degree of a vertex of G_{l}. We first show that $u \geqq l / 2$. Let $v \geqq\lceil l / 2\rceil$ be a number that satisfies

$$
f(l, s-1, t)=\binom{v}{s-1} \cdot\binom{l-v}{t}+\binom{l-v}{s-1}\binom{v}{t} .
$$

Clearly we may assume that $f(l, s, t)>0$ (i.e., $l \geqq s+t$), since otherwise there is nothing to prove. Thus $u \geqq s$. By Lemma 1

$$
\begin{aligned}
f(l, s-1, t) & \geqq N\left(G_{l}, H(s-1, t)\right) \\
& \geqq N\left(G_{l}, H(s, t)\right) \cdot \frac{N(H(s, t), H(s-1, t))}{x\left(G_{l} ; H(s, t), H(s-1, t)\right)} \\
& \geqq f(l, s, t) \cdot \frac{s}{u-s+1} \\
& \geqq \frac{s}{u-s+1}\left[\binom{v}{s}\binom{l-v}{t}+\binom{l-v}{s}\binom{v}{t}\right] \\
& =\frac{v-s+1}{u-s+1}\binom{v}{s-1} \cdot\binom{l-v}{t}+\frac{l-v-s+1}{u-s+1}\binom{l-v}{s-1}\binom{v}{t} \\
& \geqq \frac{l / 2-s+1}{u-s+1} f(l, s-1, t) .
\end{aligned}
$$

(The last inequality is true since $v \geqq l-v$ and $s-1 \geqq t$ imply

$$
\left.\binom{v}{s-1} \cdot\binom{l-v}{t} \geqq\binom{ l-v}{s-1} \cdot\binom{v}{t} \cdot\right)
$$

By our assumption $f(l, s-1, t)>0$, and thus the preceding inequality implies that $u \geqq l / 2$.

Let x be a vertex of degree u in G_{l}. Define $G^{\prime}=G_{l-u}^{\prime}=G_{I}-x$.
The rest of the proof is divided into two cases.
Case 1. $t=1$
In this case $\left\{a_{1}, a_{2}, b_{1}\right\}$ is an SRV for H. By Lemma 11:
$N\left(G_{l}, H\right)=N\left(G^{\prime}, H\right)+N\left(G_{l}, x ; H, a_{1}\right)+N\left(G_{l}, x ; H, a_{2}\right)+N\left(G_{l}, x ; H, b_{1}\right)$.
By Lemma 1

$$
N\left(G^{\prime}, H\right) \leqq N\left(G^{\prime}, H(s-1,1)\right) \cdot \frac{l-u-s}{s} .
$$

Obviously

$$
\begin{gathered}
N\left(G_{l}, x ; H, a_{1}\right) \leqq\binom{ u}{s} \cdot(l-u), \\
N\left(G_{l}, x ; H, a_{1}\right) \leqq u \cdot N\left(G^{\prime}, K(1, s)\right),
\end{gathered}
$$

and

$$
N\left(G_{l}, x ; H, b_{1}\right) \leqq N\left(G^{\prime}, H(s-1,1)\right) .
$$

Substituting these four inequalities into the preceding equality, we obtain

$$
N\left(G_{l}, H\right) \leqq\binom{ u}{s} \cdot(l-u)+u \cdot N\left(G^{\prime}, K(1, s)\right)+N\left(G^{\prime}, H(s-1,1)\right) \cdot \frac{l-u}{s}
$$

By Lemma 10

$$
N\left(G^{\prime}, K(1, s)\right)+N\left(G^{\prime}, H(s-1,1)\right) \leqq\binom{ l-u}{s}
$$

As $u \geqq l / 2$, the last two inequalities imply

$$
\begin{aligned}
N\left(G_{l}, H\right) & \leqq\binom{ u}{s} \cdot(l-u)+u \cdot\left[N\left(G^{\prime}, K(1, s)\right)+N\left(G^{\prime}, H(s-1,1)\right)\right] \\
& \leqq\binom{ u}{s} \cdot(l-u)+u \cdot\binom{l-u}{s} \\
& \leqq f(l, s, 1)
\end{aligned}
$$

This completes the proof of Case 1.
Case 2. $t \geqq 2$
In this case $\left\{a_{1}, a_{2}, b_{1}, c_{1}\right\}$ is an SRV for H. By Lemma 11

$$
\begin{aligned}
N\left(G_{l}, H\right)= & N\left(G^{\prime}, H\right)+N\left(G_{l}, x: H, a_{1}\right)+N\left(G_{l}, x ; H, a_{2}\right) \\
& +N\left(G_{l}, x ; H, b_{1}\right)+N\left(G_{l}, x ; H, c_{1}\right)
\end{aligned}
$$

By Lemma 1

$$
N\left(G^{\prime}, H\right) \leqq N\left(G^{\prime}, H(s-1,1)\right) \cdot\binom{l-u-s}{t} \cdot \frac{1}{s t}
$$

Obviously

$$
N\left(G_{l}, x ; H, a_{1}\right) \leqq\binom{ u}{s}\binom{l-u}{t}
$$

and

$$
N\left(G_{l}, x ; H, a_{2}\right) \leqq\binom{ u}{t} \cdot N\left(G^{\prime}, K(1, s)\right) .
$$

By Lemma 1

$$
N\left(G_{l}, x ; H, b_{1}\right) \leqq N\left(G^{\prime}, H(s-1, t)\right) \leqq N\left(G^{\prime}, H(s-1,1)\right) \cdot\binom{l-u-s}{t-1} \cdot \frac{1}{t},
$$

and

$$
\begin{aligned}
N\left(G_{l}, x ; H, c_{1}\right) & \leqq 2 \cdot N\left(G^{\prime}, H(s, t-1)\right) \\
& \leqq 2 N\left(G^{\prime}, H(s-1,1)\right) \cdot\binom{c-u-s}{t-1} \frac{1}{s \cdot(t-1)} .
\end{aligned}
$$

(The factor 2 is needed only if $t=2$.)
These six inequalities imply

$$
\begin{aligned}
N\left(G_{l}, H\right) \leqq & \binom{u}{s} \cdot\binom{l-u}{t}+\binom{u}{t} N\left(G^{\prime}, K(1, s)\right) \\
& +N\left(G^{\prime}, H(s-1,1)\right)\left(\frac{1}{s t}\binom{l-u-s}{t}+\left(\frac{1}{t}+\frac{2}{s(t-1)}\right)\binom{l-u-s}{t-1}\right) .
\end{aligned}
$$

As $u \geqq l / 2$, and as we have assumed that $u \geqq s \geqq t+2$, it follows that

$$
\begin{aligned}
\frac{1}{s t} & \cdot\binom{l-u-s}{t}+\left(\frac{1}{t}+\frac{2}{s(t-1)}\right) \cdot\binom{l-u-s}{t-1} \\
& \leqq \frac{1}{s t} \cdot\binom{u}{t}+\left(\frac{1}{t}+\frac{2}{s(t-1)}\right) \cdot\binom{u}{t-1} \\
& =\left(\frac{1}{s t}+\frac{1}{u-t+1}+\frac{2 t}{(u-t+1) s \cdot(t-1)}\right)\binom{u}{t} \\
& \leqq\left(\frac{1}{8}+\frac{1}{3}+\frac{2 t}{3 \cdot 4 \cdot(t-1)}\right)\binom{u}{t} \\
& \leqq\binom{ u}{t} .
\end{aligned}
$$

By Lemma 10

$$
N\left(G^{\prime}, K(1, s)\right)+N\left(G^{\prime}, H(s-1,1)\right) \leqq\binom{ l-u}{s} .
$$

The last three inequalities imply

$$
\begin{aligned}
N\left(G_{l}, H\right) & \leqq\binom{ u}{s} \cdot\binom{l-u}{t}+\binom{u}{t}\left(N\left(G^{\prime}, K(1, s)\right)+N\left(G^{\prime}, H(s-1,1)\right)\right) \\
& \leqq\binom{ u}{s}\binom{l-u}{t}+\binom{u}{t} \cdot\binom{l-u}{s} \\
& \leqq f(l, s, t)
\end{aligned}
$$

This completes the proof of the induction step for Case 2 and establishes Theorem 5.

Theorem 5 determines $N(l, H(s, t)$) for every pair $(s, t)(s \geqq t \geqq 1, s \geqq 2)$ and for all $l \geqq 0$ precisely but not explicitly, since it is not clear for which v the maximum in the formula for $f(l, s, t)$ is attained, unless $(s-t)^{2}<s+t$. (See Lemma 7.) The next two simple lemmas determine explicitly the asymptotic behaviour of $N(l, H(s, t))$ for every fixed pair $(s, t), s>t \geqq 1$, as l tends to infinity. For every such pair define

$$
\begin{gathered}
r_{s, t}(x)=\left(x^{s}+x^{t}\right) /(1+x)^{s+t} \\
h_{s, t}(x)=-t \cdot x^{s-t+1}+s \cdot x^{s-t}-s \cdot x+t .
\end{gathered}
$$

We also let $M(s, t)$ denote the maximum of $r_{s, t}(x)$ in $[0, \infty)$. (This maximum exists and is attained in $(0,1]$, since $r_{s, t}(0)=0$ and $r_{s, i}(x)=r_{s, t}(1 / x)$ for all $x>0$.)

Using this notation we can prove the following two lemmas, whose somewhat technical, rather straightforward proofs are omitted.

Lemma 12. For every $s>t \geqq 1$

$$
f(l, s, t)=\frac{M(s, t)}{s!\cdot t!} l^{s+t}+O\left(l^{s+t-1}\right)
$$

Lemma 13. (i) If $(s-t)^{2} \leqq s+t$, then

$$
M(s, t)=1 / 2^{s+t-1}
$$

(ii) If $(s-t)^{2}>s+t$, then

$$
M(s, t)=\frac{x_{0}^{s}+x_{0}^{t}}{\left(1+x_{0}\right)^{s+t}}
$$

where x_{0} is the unique zero of $h_{s, t}(x)$ in $(0,1)$.
Remark 3. For $s>t \geqq 1$, let $x_{0}(s, t)$ denote the minimal zero of $h_{s, t}$ in $(0,1]$. One can easily check that

$$
M(s, t)=r_{s, t}\left(x_{0}(s, t)\right) \quad \text { for all } s>t \geqq 1, \quad \text { and } \quad x_{0}(s, t)=1
$$

iff $(s-t)^{2} \leqq s+t$. It is easily checked that $x_{0}(s, t) \geqq t / s$ for all $s>t \geqq 1$, and we can prove that

$$
\lim _{s \rightarrow \infty} \max _{1 \equiv \leq \leq s}\left|x_{0}(s, t)-t / s\right|=0,
$$

and that

$$
M(s, t)=s^{s} t^{t} /(s+t)^{s+t}(1+o(1)) \quad \text { if }(s-t)^{2} /(s+t) \rightarrow \infty .
$$

We conclude this paper with a few remarks concerning Conjecture 1 stated in Section 3 and with another conjecture.

Conjecture 2. If H is a disjoint union of stars, then for every $l>0$ (or at least for sufficiently large l), there exists a graph G_{l} which is a disjoint union of stars, such that

$$
N(l, H)=N\left(G_{l}, H\right) .
$$

Conjecture 2 holds trivially if H is $I(k)$ - a disjoint union of isolated edges or if H is a star. It also holds if H is a disjoint union of two stars - by Theorem 5 - and if H is $H E(r, k)$, where $[k / r] \geqq r$ - by Theorem 3. By Theorem 4 the conjecture holds for all sufficiently large l if $H=H\left(s_{1}, \ldots, s_{r}\right)$, where $s_{1} \geqq \cdots \geqq$ $s_{r}>r$ and $\left(s_{1}-s_{r}\right)^{2}<s_{1}+s_{r}-2 r$.

Very recently, Z. Füredi [3] proved that the conjecture holds for all sufficiently large l if H contains no stars of size 1 .

Conjecture 1 holds for every a.e.c. graph H - by Theorem B - and for every disjoint union of stars - by Theorem 2. We can also prove that Conjecture 1 holds for the following graphs H.
(1) Every tree of diameter three without 2 -valent vertices.
(2) Every graph H obtained by adding edges to a graph $T=H\left(s_{1}, s_{2}, \ldots, s_{r}\right)$, where $s_{1} \geqq s_{2} \geqq \cdots \geqq s_{r}>r$ and $\left(s_{1}-s_{r}\right)^{2}<s_{1}+s_{r}-2 r$ (see Theorem 4), provided that every additional edge contains at least one multi-valent vertex of T. (For example, every complete bipartite graph $K(r, s)$, where $s \geqq r^{2}+r$, is such an H.)
(3) Every tree with fewer than 6 edges.

Acknowledgement

This paper forms part of the Ph.D. thesis of the author, written at the Hebrew University of Jerusalem under the supervision of Prof. M. A. Perles. I would like to thank Prof. Perles for his help and for fruitful discussions.

References

1. N. Alon, On the number of subgraphs of presc ibed type of graphs with a given number of edges, Israel J. Math. 38 (1981), 116-130.
2. P. Erdös, On the number of complete subgraphs contained in certain graphs, Publ. Math. Inst. Hungar. Acad. Sci. 7 (1962), 459-464.
3. Z. Füredi, private communication.
